Cargando…
Spiking neural network with working memory can integrate and rectify spatiotemporal features
In the real world, information is often correlated with each other in the time domain. Whether it can effectively make a decision according to the global information is the key indicator of information processing ability. Due to the discrete characteristics of spike trains and unique temporal dynami...
Autores principales: | Chen, Yi, Liu, Hanwen, Shi, Kexin, Zhang, Malu, Qu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300445/ https://www.ncbi.nlm.nih.gov/pubmed/37389360 http://dx.doi.org/10.3389/fnins.2023.1167134 |
Ejemplares similares
-
Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI
por: Giulioni, Massimiliano, et al.
Publicado: (2012) -
A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns
por: She, Xueyuan, et al.
Publicado: (2021) -
A Spiking Neural Network Framework for Robust Sound Classification
por: Wu, Jibin, et al.
Publicado: (2018) -
Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
por: Kim, Youngeun, et al.
Publicado: (2023) -
An Efficient and Perceptually Motivated Auditory Neural Encoding and Decoding Algorithm for Spiking Neural Networks
por: Pan, Zihan, et al.
Publicado: (2020)