Cargando…
Two-Stream Network One-Class Classification Model for Defect Inspections
Defect inspection is important to ensure consistent quality and efficiency in industrial manufacturing. Recently, machine vision systems integrating artificial intelligence (AI)-based inspection algorithms have exhibited promising performance in various applications, but practically, they often suff...
Autores principales: | Lee, Seunghun, Luo, Chenglong, Lee, Sungkwan, Jung, Hoeryong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300695/ https://www.ncbi.nlm.nih.gov/pubmed/37420932 http://dx.doi.org/10.3390/s23125768 |
Ejemplares similares
-
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020) -
Viewpoint-Agnostic Taekwondo Action Recognition Using Synthesized Two-Dimensional Skeletal Datasets
por: Luo, Chenglong, et al.
Publicado: (2023) -
Smart Sensing Using Electromagnetic Waves for Inspection of Defects in Rock Bolts
por: Yu, Jung-Doung, et al.
Publicado: (2020) -
A Compact Convolutional Neural Network for Surface Defect Inspection
por: Huang, Yibin, et al.
Publicado: (2020) -
An Efficient End-to-End Multitask Network Architecture for Defect Inspection
por: Zhang, Chunguang, et al.
Publicado: (2022)