Cargando…
Machine Learning Algorithms Associate Case Numbers with SARS-CoV-2 Variants Rather Than with Impactful Mutations
During the SARS-CoV-2 pandemic, much effort has been geared towards creating models to predict case numbers. These models typically rely on epidemiological data, and as such overlook viral genomic information, which could be assumed to improve predictions, as different variants show varying levels o...
Autores principales: | Vilain, Matthieu, Aris-Brosou, Stéphane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300801/ https://www.ncbi.nlm.nih.gov/pubmed/37376526 http://dx.doi.org/10.3390/v15061226 |
Ejemplares similares
-
Predicting the Reasons of Customer Complaints: A First Step Toward Anticipating Quality Issues of In Vitro Diagnostics Assays with Machine Learning
por: Aris-Brosou, Stephane, et al.
Publicado: (2018) -
Dating Phylogenies with Hybrid Local Molecular Clocks
por: Aris-Brosou, Stéphane
Publicado: (2007) -
Inferring influenza global transmission networks without complete phylogenetic information
por: Aris-Brosou, Stéphane
Publicado: (2014) -
Takotsubo Rather Than Kounis Syndrome Complicating SARS-CoV-2 Vaccination
por: Finsterer, J.
Publicado: (2022) -
Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods
por: Aris-Brosou, Stéphane, et al.
Publicado: (2008)