Cargando…
Exploring the Limits of Early Predictive Maintenance in Wind Turbines Applying an Anomaly Detection Technique
The aim of the presented investigation is to explore the time gap between an anomaly appearance in continuously measured parameters of the device and a failure, related to the end of the remaining resource of the device-critical component. In this investigation, we propose a recurrent neural network...
Autores principales: | Jankauskas, Mindaugas, Serackis, Artūras, Šapurov, Martynas, Pomarnacki, Raimondas, Baskys, Algirdas, Hyunh, Van Khang, Vaimann, Toomas, Zakis, Janis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300806/ https://www.ncbi.nlm.nih.gov/pubmed/37420861 http://dx.doi.org/10.3390/s23125695 |
Ejemplares similares
-
Framework for Bidirectional Knowledge-Based Maintenance of Wind Turbines
por: Vives, Javier, et al.
Publicado: (2022) -
Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine
por: Yeh, Chia-Hung, et al.
Publicado: (2019) -
Anomaly Detection of Wind Turbine Driveline Based on Sequence Decomposition Interactive Network
por: Lyu, Qiucheng, et al.
Publicado: (2023) -
An Ensemble Learning Solution for Predictive Maintenance of Wind Turbines Main Bearing
por: Beretta, Mattia, et al.
Publicado: (2021) -
Applying Value Sensitive Design (VSD) to Wind Turbines and Wind Parks: An Exploration
por: Oosterlaken, Ilse
Publicado: (2014)