Cargando…
Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers
Root tubers of Asphodelus bento-rainhae subsp. bento-rainhae (AbR), a vulnerable endemic species, and Asphodelus macrocarpus subsp. macrocarpus (AmR) have traditionally been used in Portugal to treat inflammatory and infectious skin disorders. The present study aims to evaluate the in vitro antimicr...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301023/ https://www.ncbi.nlm.nih.gov/pubmed/37375777 http://dx.doi.org/10.3390/ph16060830 |
_version_ | 1785064714401742848 |
---|---|
author | Malmir, Maryam Lima, Katelene Camões, Sérgio Póvoas Manageiro, Vera Duarte, Maria Paula Miranda, Joana Paiva Serrano, Rita da Silva, Isabel Moreira Lima, Beatriz Silva Caniça, Manuela Silva, Olga |
author_facet | Malmir, Maryam Lima, Katelene Camões, Sérgio Póvoas Manageiro, Vera Duarte, Maria Paula Miranda, Joana Paiva Serrano, Rita da Silva, Isabel Moreira Lima, Beatriz Silva Caniça, Manuela Silva, Olga |
author_sort | Malmir, Maryam |
collection | PubMed |
description | Root tubers of Asphodelus bento-rainhae subsp. bento-rainhae (AbR), a vulnerable endemic species, and Asphodelus macrocarpus subsp. macrocarpus (AmR) have traditionally been used in Portugal to treat inflammatory and infectious skin disorders. The present study aims to evaluate the in vitro antimicrobial activity of crude 70% and 96% hydroethanolic extracts of both medicinal plants, specifically against multidrug-resistant skin-related pathogens, to identify the involved marker secondary metabolites and also to assess the pre-clinical toxicity of these medicinal plant extracts. Bioguided fractionation of the 70% hydroethanolic extracts of both species using solvents of increasing polarity, namely diethyl ether (DEE: AbR-1, AmR-1), ethyl acetate (AbR-2, AmR-2) and aqueous (AbR-3, AmR-3) fractions, enabled the identification of the DEE fractions as the most active against all the tested Gram-positive microorganisms (MIC: 16 to 1000 µg/mL). Furthermore, phytochemical analyses using TLC and LC-UV/DAD-ESI/MS techniques revealed the presence of anthracene derivatives as the main constituents of DEE fractions, and five known compounds, namely 7′-(chrysophanol-4-yl)-chrysophanol-10’-C-beta-D-xylopyranosyl-anthrone (p), 10,7′-bichrysophanol (q), chrysophanol (r), 10-(chrysophanol-7′-yl)-10-hydroxychrysophanol-9-anthrone (s) and asphodelin (t), were identified as the main marker compounds. All these compounds showed high antimicrobial activity, particularly against Staphylococcus epidermidis (MIC: 3.2 to 100 µg/mL). Importantly, no cytotoxicity against HepG2 and HaCaT cells (up to 125 µg/mL) for crude extracts of both species and genotoxicity (up to 5000 µg/mL, with and without metabolic activation) for AbR 96% hydroethanolic extract was detected using the MTT and Ames tests, respectively. Overall, the obtained results contribute to the concrete validation of the use of these medicinal plants as potential sources of antimicrobial agents in the treatment of skin diseases. |
format | Online Article Text |
id | pubmed-10301023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103010232023-06-29 Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers Malmir, Maryam Lima, Katelene Camões, Sérgio Póvoas Manageiro, Vera Duarte, Maria Paula Miranda, Joana Paiva Serrano, Rita da Silva, Isabel Moreira Lima, Beatriz Silva Caniça, Manuela Silva, Olga Pharmaceuticals (Basel) Article Root tubers of Asphodelus bento-rainhae subsp. bento-rainhae (AbR), a vulnerable endemic species, and Asphodelus macrocarpus subsp. macrocarpus (AmR) have traditionally been used in Portugal to treat inflammatory and infectious skin disorders. The present study aims to evaluate the in vitro antimicrobial activity of crude 70% and 96% hydroethanolic extracts of both medicinal plants, specifically against multidrug-resistant skin-related pathogens, to identify the involved marker secondary metabolites and also to assess the pre-clinical toxicity of these medicinal plant extracts. Bioguided fractionation of the 70% hydroethanolic extracts of both species using solvents of increasing polarity, namely diethyl ether (DEE: AbR-1, AmR-1), ethyl acetate (AbR-2, AmR-2) and aqueous (AbR-3, AmR-3) fractions, enabled the identification of the DEE fractions as the most active against all the tested Gram-positive microorganisms (MIC: 16 to 1000 µg/mL). Furthermore, phytochemical analyses using TLC and LC-UV/DAD-ESI/MS techniques revealed the presence of anthracene derivatives as the main constituents of DEE fractions, and five known compounds, namely 7′-(chrysophanol-4-yl)-chrysophanol-10’-C-beta-D-xylopyranosyl-anthrone (p), 10,7′-bichrysophanol (q), chrysophanol (r), 10-(chrysophanol-7′-yl)-10-hydroxychrysophanol-9-anthrone (s) and asphodelin (t), were identified as the main marker compounds. All these compounds showed high antimicrobial activity, particularly against Staphylococcus epidermidis (MIC: 3.2 to 100 µg/mL). Importantly, no cytotoxicity against HepG2 and HaCaT cells (up to 125 µg/mL) for crude extracts of both species and genotoxicity (up to 5000 µg/mL, with and without metabolic activation) for AbR 96% hydroethanolic extract was detected using the MTT and Ames tests, respectively. Overall, the obtained results contribute to the concrete validation of the use of these medicinal plants as potential sources of antimicrobial agents in the treatment of skin diseases. MDPI 2023-06-01 /pmc/articles/PMC10301023/ /pubmed/37375777 http://dx.doi.org/10.3390/ph16060830 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Malmir, Maryam Lima, Katelene Camões, Sérgio Póvoas Manageiro, Vera Duarte, Maria Paula Miranda, Joana Paiva Serrano, Rita da Silva, Isabel Moreira Lima, Beatriz Silva Caniça, Manuela Silva, Olga Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers |
title | Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers |
title_full | Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers |
title_fullStr | Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers |
title_full_unstemmed | Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers |
title_short | Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers |
title_sort | bioguided identification of active antimicrobial compounds from asphodelus bento-rainhae and asphodelus macrocarpus root tubers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301023/ https://www.ncbi.nlm.nih.gov/pubmed/37375777 http://dx.doi.org/10.3390/ph16060830 |
work_keys_str_mv | AT malmirmaryam bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT limakatelene bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT camoessergiopovoas bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT manageirovera bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT duartemariapaula bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT mirandajoanapaiva bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT serranorita bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT dasilvaisabelmoreira bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT limabeatrizsilva bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT canicamanuela bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers AT silvaolga bioguidedidentificationofactiveantimicrobialcompoundsfromasphodelusbentorainhaeandasphodelusmacrocarpusroottubers |