Cargando…
NISQE: Non-Intrusive Speech Quality Evaluator Based on Natural Statistics of Mean Subtracted Contrast Normalized Coefficients of Spectrogram
With the evolution in technology, communication based on the voice has gained importance in applications such as online conferencing, online meetings, voice-over internet protocol (VoIP), etc. Limiting factors such as environmental noise, encoding and decoding of the speech signal, and limitations o...
Autores principales: | Zafar, Shakeel, Nizami, Imran Fareed, Rehman, Mobeen Ur, Majid, Muhammad, Ryu, Jihyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301095/ https://www.ncbi.nlm.nih.gov/pubmed/37420818 http://dx.doi.org/10.3390/s23125652 |
Ejemplares similares
-
The complexity of NISQ
por: Chen, Sitan, et al.
Publicado: (2023) -
3D CNN-Based Speech Emotion Recognition Using K-Means Clustering and Spectrograms
por: Hajarolasvadi, Noushin, et al.
Publicado: (2019) -
From theory to real implementation in the NISQ era
por: Grossi, Michele
Publicado: (2023) -
A Data-Driven Approach for the Diagnosis of Mechanical Systems Using Trained Subtracted Signal Spectrograms
por: Huh, Jiung, et al.
Publicado: (2019) -
Silent Speech Decoding Using Spectrogram Features Based on Neuromuscular Activities
por: Wang, You, et al.
Publicado: (2020)