Cargando…
Health Status Recognition Method for Rotating Machinery Based on Multi-Scale Hybrid Features and Improved Convolutional Neural Networks
Rotating machinery is susceptible to harsh environmental interference, and fault signal features are challenging to extract, leading to difficulties in health status recognition. This paper proposes multi-scale hybrid features and improved convolutional neural networks (MSCCNN) health status identif...
Autores principales: | Cao, Xiangang, Guo, Xingyu, Duan, Yong, Zhang, Fuqiang, Fan, Hongwei, Xu, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301142/ https://www.ncbi.nlm.nih.gov/pubmed/37420853 http://dx.doi.org/10.3390/s23125688 |
Ejemplares similares
-
Multi-Stream Convolutional Neural Networks for Rotating Machinery Fault Diagnosis under Noise and Trend Items
por: Dong, Han, et al.
Publicado: (2022) -
A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
por: Ma, Shangjun, et al.
Publicado: (2019) -
Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
por: Li, Hongmei, et al.
Publicado: (2020) -
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
por: Yan, Jing, et al.
Publicado: (2021) -
Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
por: Cai, Yuxiang, et al.
Publicado: (2022)