Cargando…

Research on Dust Effect for MEMS Thermal Wind Sensors

This communication investigated the dust effect on microelectromechanical system (MEMS) thermal wind sensors, with an aim to evaluate performance in practical applications. An equivalent circuit was established to analyze the temperature gradient influenced by dust accumulation on the sensor’s surfa...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Zhenxiang, Wang, Yishan, Qin, Ming, Huang, Qingan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301299/
https://www.ncbi.nlm.nih.gov/pubmed/37420700
http://dx.doi.org/10.3390/s23125533
Descripción
Sumario:This communication investigated the dust effect on microelectromechanical system (MEMS) thermal wind sensors, with an aim to evaluate performance in practical applications. An equivalent circuit was established to analyze the temperature gradient influenced by dust accumulation on the sensor’s surface. The finite element method (FEM) simulation was carried out to verify the proposed model using COMSOL Multiphysics software. In experiments, dust was accumulated on the sensor’s surface by two different methods. The measured results indicated that the output voltage for the sensor with dust on its surface was a little smaller than that of the sensor without dust at the same wind speed, which can degrade the measurement sensitivity and accuracy. Compared to the sensor without dust, the average voltage was reduced by about 1.91% and 3.75% when the dustiness was 0.04 g/mL and 0.12 g/mL, respectively. The results can provide a reference for the actual application of thermal wind sensors in harsh environments.