Cargando…
Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans Cross-Kingdom Microorganisms
Dental caries is one of the most common chronic diseases worldwide. Streptococcus mutans and Candida albicans are two major pathogens associated with dental caries. Several recent studies revealed that Lactobacillus plantarum inhibits S. mutans and C. albicans in biofilms and in a rodent model of de...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301334/ https://www.ncbi.nlm.nih.gov/pubmed/37375538 http://dx.doi.org/10.3390/pathogens12060848 |
_version_ | 1785064787425624064 |
---|---|
author | Bao, Jianhang Huang, Xinyan Zeng, Yan Wu, Tong Tong Lu, Xingyi Meng, Gina Ren, Yanfang Xiao, Jin |
author_facet | Bao, Jianhang Huang, Xinyan Zeng, Yan Wu, Tong Tong Lu, Xingyi Meng, Gina Ren, Yanfang Xiao, Jin |
author_sort | Bao, Jianhang |
collection | PubMed |
description | Dental caries is one of the most common chronic diseases worldwide. Streptococcus mutans and Candida albicans are two major pathogens associated with dental caries. Several recent studies revealed that Lactobacillus plantarum inhibits S. mutans and C. albicans in biofilms and in a rodent model of dental caries. The aim of this study was to investigate the dose-dependent effect of L. plantarum against S. mutans and C. albicans in a planktonic model that simulated a high-caries-risk clinical condition. Mono-, dual-, and multi-species models were utilized, with five doses of L. plantarum (ranging from 1.0 × 10(4) to 1.0 × 10(8) CFU/mL). Real-time PCR was used to assess the expression of the virulence genes of C. albicans and S. mutans and the genes of L. plantarum. Student’s t-tests and one-way ANOVA, followed by post hoc tests, were employed to compare the cell viability and gene expression among groups. A dose-dependent inhibition on C. albicans and S. mutans was observed with increased dosages of L. plantarum. L. plantarum at 10(8) CFU/mL demonstrated the highest antibacterial and antifungal inhibitory effect in the dual- and multi-species models. Specifically, at 20 h, the growth of C. albicans and S. mutans was suppressed by 1.5 and 5 logs, respectively (p < 0.05). The antifungal and antibacterial effects were attenuated in lower doses of L. plantarum (10(4)–10(7) CFU/mL). The expression of C. albicans HWP1 and ECE 1 genes and S. mutans lacC and lacG genes were significantly downregulated with an added 10(8) CFU/mL of L. plantarum (p < 0.05). The addition of 10(8) CFU/mL L. plantarum further inhibited the hyphae or pseudohyphae formation of C. albicans. In summary, L. plantarum demonstrated dose-dependent antifungal and antibacterial effects against C. albicans and S. mutans. L. plantarum emerged as a promising candidate for the creation of novel antimicrobial probiotic products targeting dental caries prevention. Further research is warranted to identify the functional metabolites produced by L. plantarum at different dosages when interacting with C. albicans and S. mutans. |
format | Online Article Text |
id | pubmed-10301334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103013342023-06-29 Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans Cross-Kingdom Microorganisms Bao, Jianhang Huang, Xinyan Zeng, Yan Wu, Tong Tong Lu, Xingyi Meng, Gina Ren, Yanfang Xiao, Jin Pathogens Article Dental caries is one of the most common chronic diseases worldwide. Streptococcus mutans and Candida albicans are two major pathogens associated with dental caries. Several recent studies revealed that Lactobacillus plantarum inhibits S. mutans and C. albicans in biofilms and in a rodent model of dental caries. The aim of this study was to investigate the dose-dependent effect of L. plantarum against S. mutans and C. albicans in a planktonic model that simulated a high-caries-risk clinical condition. Mono-, dual-, and multi-species models were utilized, with five doses of L. plantarum (ranging from 1.0 × 10(4) to 1.0 × 10(8) CFU/mL). Real-time PCR was used to assess the expression of the virulence genes of C. albicans and S. mutans and the genes of L. plantarum. Student’s t-tests and one-way ANOVA, followed by post hoc tests, were employed to compare the cell viability and gene expression among groups. A dose-dependent inhibition on C. albicans and S. mutans was observed with increased dosages of L. plantarum. L. plantarum at 10(8) CFU/mL demonstrated the highest antibacterial and antifungal inhibitory effect in the dual- and multi-species models. Specifically, at 20 h, the growth of C. albicans and S. mutans was suppressed by 1.5 and 5 logs, respectively (p < 0.05). The antifungal and antibacterial effects were attenuated in lower doses of L. plantarum (10(4)–10(7) CFU/mL). The expression of C. albicans HWP1 and ECE 1 genes and S. mutans lacC and lacG genes were significantly downregulated with an added 10(8) CFU/mL of L. plantarum (p < 0.05). The addition of 10(8) CFU/mL L. plantarum further inhibited the hyphae or pseudohyphae formation of C. albicans. In summary, L. plantarum demonstrated dose-dependent antifungal and antibacterial effects against C. albicans and S. mutans. L. plantarum emerged as a promising candidate for the creation of novel antimicrobial probiotic products targeting dental caries prevention. Further research is warranted to identify the functional metabolites produced by L. plantarum at different dosages when interacting with C. albicans and S. mutans. MDPI 2023-06-20 /pmc/articles/PMC10301334/ /pubmed/37375538 http://dx.doi.org/10.3390/pathogens12060848 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bao, Jianhang Huang, Xinyan Zeng, Yan Wu, Tong Tong Lu, Xingyi Meng, Gina Ren, Yanfang Xiao, Jin Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans Cross-Kingdom Microorganisms |
title | Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans Cross-Kingdom Microorganisms |
title_full | Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans Cross-Kingdom Microorganisms |
title_fullStr | Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans Cross-Kingdom Microorganisms |
title_full_unstemmed | Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans Cross-Kingdom Microorganisms |
title_short | Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans Cross-Kingdom Microorganisms |
title_sort | dose-dependent inhibitory effect of probiotic lactobacillus plantarum on streptococcus mutans-candida albicans cross-kingdom microorganisms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301334/ https://www.ncbi.nlm.nih.gov/pubmed/37375538 http://dx.doi.org/10.3390/pathogens12060848 |
work_keys_str_mv | AT baojianhang dosedependentinhibitoryeffectofprobioticlactobacillusplantarumonstreptococcusmutanscandidaalbicanscrosskingdommicroorganisms AT huangxinyan dosedependentinhibitoryeffectofprobioticlactobacillusplantarumonstreptococcusmutanscandidaalbicanscrosskingdommicroorganisms AT zengyan dosedependentinhibitoryeffectofprobioticlactobacillusplantarumonstreptococcusmutanscandidaalbicanscrosskingdommicroorganisms AT wutongtong dosedependentinhibitoryeffectofprobioticlactobacillusplantarumonstreptococcusmutanscandidaalbicanscrosskingdommicroorganisms AT luxingyi dosedependentinhibitoryeffectofprobioticlactobacillusplantarumonstreptococcusmutanscandidaalbicanscrosskingdommicroorganisms AT menggina dosedependentinhibitoryeffectofprobioticlactobacillusplantarumonstreptococcusmutanscandidaalbicanscrosskingdommicroorganisms AT renyanfang dosedependentinhibitoryeffectofprobioticlactobacillusplantarumonstreptococcusmutanscandidaalbicanscrosskingdommicroorganisms AT xiaojin dosedependentinhibitoryeffectofprobioticlactobacillusplantarumonstreptococcusmutanscandidaalbicanscrosskingdommicroorganisms |