Cargando…

Experimental and Numerical Study of Non-Explosive Simulated Blast Loading on Reinforced Concrete Slabs

This study presents a non-explosive method for simulating blast loading on reinforced concrete (RC) slabs. The method involves using a newly developed blast simulator to apply a speedy impact load on the slab, which generates a pressure wave similar to that of an actual blast. Both experimental and...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Zhixiang, Wang, Wei, Yu, Guocai, Ma, Jian, Zhang, Weiming, Wu, Linzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301346/
https://www.ncbi.nlm.nih.gov/pubmed/37374593
http://dx.doi.org/10.3390/ma16124410
Descripción
Sumario:This study presents a non-explosive method for simulating blast loading on reinforced concrete (RC) slabs. The method involves using a newly developed blast simulator to apply a speedy impact load on the slab, which generates a pressure wave similar to that of an actual blast. Both experimental and numerical simulations were carried out to evaluate the effectiveness of the method. The experimental results showed that the non-explosive method can produce a pressure wave with a peak pressure and duration analogous to those of an actual blast. The numerical simulations also showed good agreement with the experimental results. Additionally, parameter studies were conducted to evaluate the effects of the rubber shape, the impact velocity, the bottom thickness, and the upper thickness on the impact loading. The results indicate that pyramidal rubber is more suitable as an impact cushion for simulating blast loading than planar rubber. The impact velocity has the widest range of regulation for peak pressure and impulse. As the velocity increases from 12.76 to 23.41 m/s, the corresponding range of values for peak pressure is 6.457 to 17.108 MPa, and for impulse, it is 8.573 to 14.151 MPa∙ms. The variation in the upper thickness of the pyramidal rubber has a more positive effect on the impact load than the bottom thickness. With the upper thickness increasing from 30 mm to 130 mm, the peak pressure decreased by 59.01%, and the impulse increased by 16.64%. Meanwhile, when the bottom part’s thickness increased from 30 mm to 130 mm, the peak pressure decreased by 44.59%, and the impulse increased by 11.01%. The proposed method provides a safe and cost-effective alternative to traditional explosive methods for simulating blast loading on RC slabs.