Cargando…

Sinogram Inpainting with Generative Adversarial Networks and Shape Priors

X-ray computed tomography is a widely used, non-destructive imaging technique that computes cross-sectional images of an object from a set of X-ray absorption profiles (the so-called sinogram). The computation of the image from the sinogram is an ill-posed inverse problem, which becomes underdetermi...

Descripción completa

Detalles Bibliográficos
Autores principales: Valat, Emilien, Farrahi, Katayoun, Blumensath, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301347/
https://www.ncbi.nlm.nih.gov/pubmed/37368546
http://dx.doi.org/10.3390/tomography9030094
Descripción
Sumario:X-ray computed tomography is a widely used, non-destructive imaging technique that computes cross-sectional images of an object from a set of X-ray absorption profiles (the so-called sinogram). The computation of the image from the sinogram is an ill-posed inverse problem, which becomes underdetermined when we are only able to collect insufficiently many X-ray measurements. We are here interested in solving X-ray tomography image reconstruction problems where we are unable to scan the object from all directions, but where we have prior information about the object’s shape. We thus propose a method that reduces image artefacts due to limited tomographic measurements by inferring missing measurements using shape priors. Our method uses a Generative Adversarial Network that combines limited acquisition data and shape information. While most existing methods focus on evenly spaced missing scanning angles, we propose an approach that infers a substantial number of consecutive missing acquisitions. We show that our method consistently improves image quality compared to images reconstructed using the previous state-of-the-art sinogram-inpainting techniques. In particular, we demonstrate a 7 dB Peak Signal-to-Noise Ratio improvement compared to other methods.