Cargando…
A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics
Protein–carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligan...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301416/ https://www.ncbi.nlm.nih.gov/pubmed/37420529 http://dx.doi.org/10.3390/s23125362 |
_version_ | 1785064806704742400 |
---|---|
author | Kundalia, Paras H. Pažitná, Lucia Kianičková, Kristína Jáné, Eduard Lorencová, Lenka Katrlík, Jaroslav |
author_facet | Kundalia, Paras H. Pažitná, Lucia Kianičková, Kristína Jáné, Eduard Lorencová, Lenka Katrlík, Jaroslav |
author_sort | Kundalia, Paras H. |
collection | PubMed |
description | Protein–carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligands among the plethora of others is central for any glycan-targeting probe being tested by microarray analyses. Ever since the introduction of the microarray as an elemental tool for high-throughput glycoprofiling, numerous distinct array platforms possessing different customizations and assemblies have been developed. Accompanying these customizations are various factors ushering variances across array platforms. In this primer, we investigate the influence of various extrinsic factors, namely printing parameters, incubation procedures, analyses and array storage conditions on the protein–carbohydrate interactions and evaluate these factors for the optimal performance of microarray glycomics analysis. We hereby propose a 4D approach (Design–Dispense–Detect–Deduce) to minimize the effect of these extrinsic factors on glycomics microarray analyses and thereby streamline cross-platform analyses and comparisons. This work will aid in optimizing microarray analyses for glycomics, minimize cross-platform disparities and bolster the further development of this technology. |
format | Online Article Text |
id | pubmed-10301416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103014162023-06-29 A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics Kundalia, Paras H. Pažitná, Lucia Kianičková, Kristína Jáné, Eduard Lorencová, Lenka Katrlík, Jaroslav Sensors (Basel) Article Protein–carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligands among the plethora of others is central for any glycan-targeting probe being tested by microarray analyses. Ever since the introduction of the microarray as an elemental tool for high-throughput glycoprofiling, numerous distinct array platforms possessing different customizations and assemblies have been developed. Accompanying these customizations are various factors ushering variances across array platforms. In this primer, we investigate the influence of various extrinsic factors, namely printing parameters, incubation procedures, analyses and array storage conditions on the protein–carbohydrate interactions and evaluate these factors for the optimal performance of microarray glycomics analysis. We hereby propose a 4D approach (Design–Dispense–Detect–Deduce) to minimize the effect of these extrinsic factors on glycomics microarray analyses and thereby streamline cross-platform analyses and comparisons. This work will aid in optimizing microarray analyses for glycomics, minimize cross-platform disparities and bolster the further development of this technology. MDPI 2023-06-06 /pmc/articles/PMC10301416/ /pubmed/37420529 http://dx.doi.org/10.3390/s23125362 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kundalia, Paras H. Pažitná, Lucia Kianičková, Kristína Jáné, Eduard Lorencová, Lenka Katrlík, Jaroslav A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics |
title | A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics |
title_full | A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics |
title_fullStr | A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics |
title_full_unstemmed | A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics |
title_short | A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics |
title_sort | holistic 4d approach to optimize intrinsic and extrinsic factors contributing to variability in microarray biosensing in glycomics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301416/ https://www.ncbi.nlm.nih.gov/pubmed/37420529 http://dx.doi.org/10.3390/s23125362 |
work_keys_str_mv | AT kundaliaparash aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT pazitnalucia aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT kianickovakristina aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT janeeduard aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT lorencovalenka aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT katrlikjaroslav aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT kundaliaparash holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT pazitnalucia holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT kianickovakristina holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT janeeduard holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT lorencovalenka holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics AT katrlikjaroslav holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics |