Cargando…

A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics

Protein–carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligan...

Descripción completa

Detalles Bibliográficos
Autores principales: Kundalia, Paras H., Pažitná, Lucia, Kianičková, Kristína, Jáné, Eduard, Lorencová, Lenka, Katrlík, Jaroslav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301416/
https://www.ncbi.nlm.nih.gov/pubmed/37420529
http://dx.doi.org/10.3390/s23125362
_version_ 1785064806704742400
author Kundalia, Paras H.
Pažitná, Lucia
Kianičková, Kristína
Jáné, Eduard
Lorencová, Lenka
Katrlík, Jaroslav
author_facet Kundalia, Paras H.
Pažitná, Lucia
Kianičková, Kristína
Jáné, Eduard
Lorencová, Lenka
Katrlík, Jaroslav
author_sort Kundalia, Paras H.
collection PubMed
description Protein–carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligands among the plethora of others is central for any glycan-targeting probe being tested by microarray analyses. Ever since the introduction of the microarray as an elemental tool for high-throughput glycoprofiling, numerous distinct array platforms possessing different customizations and assemblies have been developed. Accompanying these customizations are various factors ushering variances across array platforms. In this primer, we investigate the influence of various extrinsic factors, namely printing parameters, incubation procedures, analyses and array storage conditions on the protein–carbohydrate interactions and evaluate these factors for the optimal performance of microarray glycomics analysis. We hereby propose a 4D approach (Design–Dispense–Detect–Deduce) to minimize the effect of these extrinsic factors on glycomics microarray analyses and thereby streamline cross-platform analyses and comparisons. This work will aid in optimizing microarray analyses for glycomics, minimize cross-platform disparities and bolster the further development of this technology.
format Online
Article
Text
id pubmed-10301416
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103014162023-06-29 A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics Kundalia, Paras H. Pažitná, Lucia Kianičková, Kristína Jáné, Eduard Lorencová, Lenka Katrlík, Jaroslav Sensors (Basel) Article Protein–carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligands among the plethora of others is central for any glycan-targeting probe being tested by microarray analyses. Ever since the introduction of the microarray as an elemental tool for high-throughput glycoprofiling, numerous distinct array platforms possessing different customizations and assemblies have been developed. Accompanying these customizations are various factors ushering variances across array platforms. In this primer, we investigate the influence of various extrinsic factors, namely printing parameters, incubation procedures, analyses and array storage conditions on the protein–carbohydrate interactions and evaluate these factors for the optimal performance of microarray glycomics analysis. We hereby propose a 4D approach (Design–Dispense–Detect–Deduce) to minimize the effect of these extrinsic factors on glycomics microarray analyses and thereby streamline cross-platform analyses and comparisons. This work will aid in optimizing microarray analyses for glycomics, minimize cross-platform disparities and bolster the further development of this technology. MDPI 2023-06-06 /pmc/articles/PMC10301416/ /pubmed/37420529 http://dx.doi.org/10.3390/s23125362 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kundalia, Paras H.
Pažitná, Lucia
Kianičková, Kristína
Jáné, Eduard
Lorencová, Lenka
Katrlík, Jaroslav
A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics
title A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics
title_full A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics
title_fullStr A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics
title_full_unstemmed A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics
title_short A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics
title_sort holistic 4d approach to optimize intrinsic and extrinsic factors contributing to variability in microarray biosensing in glycomics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301416/
https://www.ncbi.nlm.nih.gov/pubmed/37420529
http://dx.doi.org/10.3390/s23125362
work_keys_str_mv AT kundaliaparash aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT pazitnalucia aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT kianickovakristina aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT janeeduard aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT lorencovalenka aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT katrlikjaroslav aholistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT kundaliaparash holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT pazitnalucia holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT kianickovakristina holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT janeeduard holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT lorencovalenka holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics
AT katrlikjaroslav holistic4dapproachtooptimizeintrinsicandextrinsicfactorscontributingtovariabilityinmicroarraybiosensinginglycomics