Cargando…
Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time–Frequency-Based Features and Deep Learning Models
The milling machine serves an important role in manufacturing because of its versatility in machining. The cutting tool is a critical component of machining because it is responsible for machining accuracy and surface finishing, impacting industrial productivity. Monitoring the cutting tool’s life i...
Autores principales: | Sayyad, Sameer, Kumar, Satish, Bongale, Arunkumar, Kotecha, Ketan, Abraham, Ajith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301425/ https://www.ncbi.nlm.nih.gov/pubmed/37420825 http://dx.doi.org/10.3390/s23125659 |
Ejemplares similares
-
Fault Detection in Induction Motor Using Time Domain and Spectral Imaging-Based Transfer Learning Approach on Vibration Data
por: Misra, Sajal, et al.
Publicado: (2022) -
A Low-Cost Multi-Sensor Data Acquisition System for Fault Detection in Fused Deposition Modelling
por: Kumar, Satish, et al.
Publicado: (2022) -
Wear Characterization of Phenol-Formaldehyde-Based Saguvani Wood–Polymer Composite—An ANOVA Approach
por: Ramesh, B. T., et al.
Publicado: (2023) -
Three-Stage Wiener-Process-Based Model for Remaining Useful Life Prediction of a Cutting Tool in High-Speed Milling
por: Liu, Weichao, et al.
Publicado: (2022) -
Tribological and Hardness Analyses of Friction-Stir-Processed Composites Using the Taguchi Approach
por: Saxena, Pragya, et al.
Publicado: (2023)