Cargando…
Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning
This paper presents a multi-agent reinforcement learning (MARL) algorithm to address the scheduling and routing problems of multiple automated guided vehicles (AGVs), with the goal of minimizing overall energy consumption. The proposed algorithm is developed based on the multi-agent deep determinist...
Autores principales: | Ye, Xianfeng, Deng, Zhiyun, Shi, Yanjun, Shen, Weiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301467/ https://www.ncbi.nlm.nih.gov/pubmed/37420781 http://dx.doi.org/10.3390/s23125615 |
Ejemplares similares
-
Travel time optimization on multi-AGV routing by reverse annealing
por: Haba, Renichiro, et al.
Publicado: (2022) -
Research on AGV path tracking method based on global vision and reinforcement learning
por: Zhu, Qixuan, et al.
Publicado: (2023) -
Multi-AGV path planning with double-path constraints by using an improved genetic algorithm
por: Han, Zengliang, et al.
Publicado: (2017) -
An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem
por: Meng, Leilei, et al.
Publicado: (2023) -
Detection of Lower Body for AGV Based on SSD Algorithm with ResNet
por: Gao, Xinbiao, et al.
Publicado: (2022)