Cargando…
Simulation of a Fully Digital Computing-in-Memory for Non-Volatile Memory for Artificial Intelligence Edge Applications
In recent years, digital computing in memory (CIM) has been an efficient and high-performance solution in artificial intelligence (AI) edge inference. Nevertheless, digital CIM based on non-volatile memory (NVM) is less discussed for the sophisticated intrinsic physical and electrical behavior of no...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301468/ https://www.ncbi.nlm.nih.gov/pubmed/37374760 http://dx.doi.org/10.3390/mi14061175 |
Sumario: | In recent years, digital computing in memory (CIM) has been an efficient and high-performance solution in artificial intelligence (AI) edge inference. Nevertheless, digital CIM based on non-volatile memory (NVM) is less discussed for the sophisticated intrinsic physical and electrical behavior of non-volatile devices. In this paper, we propose a fully digital non-volatile CIM (DNV-CIM) macro with compressed coding look-up table (LUT) multiplier (CCLUTM) using the 40 nm technology, which is highly compatible with the standard commodity NOR Flash memory. We also provide a continuous accumulation scheme for machine learning applications. When applied to a modified ResNet18 network trained under the CIFAR-10 dataset, the simulations indicate that the proposed CCLUTM-based DNV-CIM can achieve a peak energy efficiency of 75.18 TOPS/W with 4-bit multiplication and accumulation (MAC) operations. |
---|