Cargando…
Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets
A thoracic aortic aneurysm is an abnormal dilatation of the aorta that can progress and lead to rupture. The decision to conduct surgery is made by considering the maximum diameter, but it is now well known that this metric alone is not completely reliable. The advent of 4D flow magnetic resonance i...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301513/ https://www.ncbi.nlm.nih.gov/pubmed/37367471 http://dx.doi.org/10.3390/jimaging9060123 |
_version_ | 1785064829537484800 |
---|---|
author | Barrera-Naranjo, Armando Marin-Castrillon, Diana M. Decourselle, Thomas Lin, Siyu Leclerc, Sarah Morgant, Marie-Catherine Bernard, Chloé De Oliveira, Shirley Boucher, Arnaud Presles, Benoit Bouchot, Olivier Christophe, Jean-Joseph Lalande, Alain |
author_facet | Barrera-Naranjo, Armando Marin-Castrillon, Diana M. Decourselle, Thomas Lin, Siyu Leclerc, Sarah Morgant, Marie-Catherine Bernard, Chloé De Oliveira, Shirley Boucher, Arnaud Presles, Benoit Bouchot, Olivier Christophe, Jean-Joseph Lalande, Alain |
author_sort | Barrera-Naranjo, Armando |
collection | PubMed |
description | A thoracic aortic aneurysm is an abnormal dilatation of the aorta that can progress and lead to rupture. The decision to conduct surgery is made by considering the maximum diameter, but it is now well known that this metric alone is not completely reliable. The advent of 4D flow magnetic resonance imaging has allowed for the calculation of new biomarkers for the study of aortic diseases, such as wall shear stress. However, the calculation of these biomarkers requires the precise segmentation of the aorta during all phases of the cardiac cycle. The objective of this work was to compare two different methods for automatically segmenting the thoracic aorta in the systolic phase using 4D flow MRI. The first method is based on a level set framework and uses the velocity field in addition to 3D phase contrast magnetic resonance imaging. The second method is a U-Net-like approach that is only applied to magnitude images from 4D flow MRI. The used dataset was composed of 36 exams from different patients, with ground truth data for the systolic phase of the cardiac cycle. The comparison was performed based on selected metrics, such as the Dice similarity coefficient (DSC) and Hausdorf distance (HD), for the whole aorta and also three aortic regions. Wall shear stress was also assessed and the maximum wall shear stress values were used for comparison. The U-Net-based approach provided statistically better results for the 3D segmentation of the aorta, with a DSC of 0.92 ± 0.02 vs. 0.86 ± 0.5 and an HD of 21.49 ± 24.8 mm vs. 35.79 ± 31.33 mm for the whole aorta. The absolute difference between the wall shear stress and ground truth slightly favored the level set method, but not significantly (0.754 ± 1.07 Pa vs. 0.737 ± 0.79 Pa). The results showed that the deep learning-based method should be considered for the segmentation of all time steps in order to evaluate biomarkers based on 4D flow MRI. |
format | Online Article Text |
id | pubmed-10301513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103015132023-06-29 Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets Barrera-Naranjo, Armando Marin-Castrillon, Diana M. Decourselle, Thomas Lin, Siyu Leclerc, Sarah Morgant, Marie-Catherine Bernard, Chloé De Oliveira, Shirley Boucher, Arnaud Presles, Benoit Bouchot, Olivier Christophe, Jean-Joseph Lalande, Alain J Imaging Article A thoracic aortic aneurysm is an abnormal dilatation of the aorta that can progress and lead to rupture. The decision to conduct surgery is made by considering the maximum diameter, but it is now well known that this metric alone is not completely reliable. The advent of 4D flow magnetic resonance imaging has allowed for the calculation of new biomarkers for the study of aortic diseases, such as wall shear stress. However, the calculation of these biomarkers requires the precise segmentation of the aorta during all phases of the cardiac cycle. The objective of this work was to compare two different methods for automatically segmenting the thoracic aorta in the systolic phase using 4D flow MRI. The first method is based on a level set framework and uses the velocity field in addition to 3D phase contrast magnetic resonance imaging. The second method is a U-Net-like approach that is only applied to magnitude images from 4D flow MRI. The used dataset was composed of 36 exams from different patients, with ground truth data for the systolic phase of the cardiac cycle. The comparison was performed based on selected metrics, such as the Dice similarity coefficient (DSC) and Hausdorf distance (HD), for the whole aorta and also three aortic regions. Wall shear stress was also assessed and the maximum wall shear stress values were used for comparison. The U-Net-based approach provided statistically better results for the 3D segmentation of the aorta, with a DSC of 0.92 ± 0.02 vs. 0.86 ± 0.5 and an HD of 21.49 ± 24.8 mm vs. 35.79 ± 31.33 mm for the whole aorta. The absolute difference between the wall shear stress and ground truth slightly favored the level set method, but not significantly (0.754 ± 1.07 Pa vs. 0.737 ± 0.79 Pa). The results showed that the deep learning-based method should be considered for the segmentation of all time steps in order to evaluate biomarkers based on 4D flow MRI. MDPI 2023-06-19 /pmc/articles/PMC10301513/ /pubmed/37367471 http://dx.doi.org/10.3390/jimaging9060123 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Barrera-Naranjo, Armando Marin-Castrillon, Diana M. Decourselle, Thomas Lin, Siyu Leclerc, Sarah Morgant, Marie-Catherine Bernard, Chloé De Oliveira, Shirley Boucher, Arnaud Presles, Benoit Bouchot, Olivier Christophe, Jean-Joseph Lalande, Alain Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets |
title | Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets |
title_full | Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets |
title_fullStr | Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets |
title_full_unstemmed | Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets |
title_short | Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets |
title_sort | segmentation of 4d flow mri: comparison between 3d deep learning and velocity-based level sets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301513/ https://www.ncbi.nlm.nih.gov/pubmed/37367471 http://dx.doi.org/10.3390/jimaging9060123 |
work_keys_str_mv | AT barreranaranjoarmando segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT marincastrillondianam segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT decoursellethomas segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT linsiyu segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT leclercsarah segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT morgantmariecatherine segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT bernardchloe segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT deoliveirashirley segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT boucherarnaud segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT preslesbenoit segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT bouchotolivier segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT christophejeanjoseph segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets AT lalandealain segmentationof4dflowmricomparisonbetween3ddeeplearningandvelocitybasedlevelsets |