Cargando…
Explainable COVID-19 Detection Based on Chest X-rays Using an End-to-End RegNet Architecture
COVID-19,which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the worst pandemics in recent history. The identification of patients suspected to be infected with COVID-19 is becoming crucial to reduce its spread. We aimed to validate and test a deep learning...
Autores principales: | Chetoui, Mohamed, Akhloufi, Moulay A., Bouattane, El Mostafa, Abdulnour, Joseph, Roux, Stephane, Bernard, Chantal D’Aoust |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301527/ https://www.ncbi.nlm.nih.gov/pubmed/37376626 http://dx.doi.org/10.3390/v15061327 |
Ejemplares similares
-
Explainable Vision Transformers and Radiomics for COVID-19 Detection in Chest X-rays
por: Chetoui, Mohamed, et al.
Publicado: (2022) -
Analysis of CT scan images for COVID-19 pneumonia based on a deep ensemble framework with DenseNet, Swin transformer, and RegNet
por: Peng, Lihong, et al.
Publicado: (2022) -
Deep Learning Methods for Chest Disease Detection Using Radiography Images
por: Nasser, Adnane Ait, et al.
Publicado: (2023) -
REGNET: mining context-specific human transcription networks using composite genomic information
por: Chi, Sang-Mun, et al.
Publicado: (2014) -
A Review of Recent Advances in Deep Learning Models for Chest Disease Detection Using Radiography
por: Ait Nasser, Adnane, et al.
Publicado: (2023)