Cargando…
Computational Integral Imaging Reconstruction via Elemental Image Blending without Normalization
This paper presents a novel computational integral imaging reconstruction (CIIR) method using elemental image blending to eliminate the normalization process in CIIR. Normalization is commonly used in CIIR to address uneven overlapping artifacts. By incorporating elemental image blending, we remove...
Autores principales: | Lee, Eunsu, Cho, Hyunji, Yoo, Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301616/ https://www.ncbi.nlm.nih.gov/pubmed/37420635 http://dx.doi.org/10.3390/s23125468 |
Ejemplares similares
-
Image Enhancement for Computational Integral Imaging Reconstruction via Four-Dimensional Image Structure
por: Bae, Joungeun, et al.
Publicado: (2020) -
Image Enhancement of Computational Reconstruction in Diffraction Grating Imaging Using Multiple Parallax Image Arrays
por: Jang, Jae-Young, et al.
Publicado: (2020) -
Computational Three-Dimensional Imaging System via Diffraction Grating Imaging with Multiple Wavelengths
por: Jang, Jae-Young, et al.
Publicado: (2021) -
Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction
por: Lee, Hyunkwang, et al.
Publicado: (2019) -
Image Superresolution Reconstruction via Granular Computing Clustering
por: Liu, Hongbing, et al.
Publicado: (2014)