Cargando…
Biologically informed variational autoencoders allow predictive modeling of genetic and drug-induced perturbations
MOTIVATION: Variational autoencoders (VAEs) have rapidly increased in popularity in biological applications and have already successfully been used on many omic datasets. Their latent space provides a low-dimensional representation of input data, and VAEs have been applied, e.g. for clustering of si...
Autores principales: | Doncevic, Daria, Herrmann, Carl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301695/ https://www.ncbi.nlm.nih.gov/pubmed/37326971 http://dx.doi.org/10.1093/bioinformatics/btad387 |
Ejemplares similares
-
An Information-Theoretic Perspective on Proper Quaternion Variational Autoencoders
por: Grassucci, Eleonora, et al.
Publicado: (2021) -
Drug-protein interaction prediction via variational autoencoders and attention mechanisms
por: Zhang, Yue, et al.
Publicado: (2022) -
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
por: Zhang, Yuanyuan, et al.
Publicado: (2023) -
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Drug repositioning based on heterogeneous networks and variational graph autoencoders
por: Lei, Song, et al.
Publicado: (2022)