Cargando…
Artemisia herba-alba sesquiterpenes: in silico inhibition in the ATP-binding pocket
To identify antimicrobial leads for medical applications, metabolites from the aerial part of Artemisia herba-alba were extracted and chromatographically purified. Two new sesquiterpenes, 1β,8α-dihydroxyeudesm-4-en-6β,7α,11βH-12,6-olide (1) and 1β,6α,8α-trihydroxy, 11α-methyl-eudesma-4(15)-en-13-pro...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301712/ https://www.ncbi.nlm.nih.gov/pubmed/37388153 http://dx.doi.org/10.1039/d3ra02690f |
Sumario: | To identify antimicrobial leads for medical applications, metabolites from the aerial part of Artemisia herba-alba were extracted and chromatographically purified. Two new sesquiterpenes, 1β,8α-dihydroxyeudesm-4-en-6β,7α,11βH-12,6-olide (1) and 1β,6α,8α-trihydroxy, 11α-methyl-eudesma-4(15)-en-13-propanoate (2) along with a known eudesmanolide 11-epi-artapshin (3) were identified. Structures were determined by spectroscopic methods including 1D- and 2D-NMR as well as mass spectroscopy. Compound 3 inhibited Gram-positive bacteria Bacillus subtilis, Lactobacillus cereus and Staphylococcus aureus and exhibited antifungal activity against the pathogenic fungus F. solani. The mode-of-action of these antimicrobial sesquiterpenes as bacterial type II DNA topoisomerase and/or DNA gyrase B inhibitors were examined via in silico studies. Such molecular-docking studies were also employed to examine antifungal activity against an N-myristoyl transferase (NMT) target. Compound 3 had the greatest gyrase B binding affinity in the ATP-binding pocket and was found to possess an inhibitory action against non-invasive micro-test technology (NMT). |
---|