Cargando…

Response evaluation of two commercial thermoluminescence dosimeters (TLDs) against different parameters

OBJECTIVES: It is essential to study the dosimetric performance and reliability of personal dosimeters. This study examines and compares the responses of two commercial thermoluminescence dosimeters (TLDs), the TLD-100 and the MTS-N. METHODS: We compared the two TLDs to various parameters such as en...

Descripción completa

Detalles Bibliográficos
Autores principales: Alanazi, Sitah Fahad, Alarifi, Haya, Alshehri, Abdullah, Almurayshid, Mansour
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The British Institute of Radiology. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301716/
https://www.ncbi.nlm.nih.gov/pubmed/37389000
http://dx.doi.org/10.1259/bjro.20220035
_version_ 1785064878358134784
author Alanazi, Sitah Fahad
Alarifi, Haya
Alshehri, Abdullah
Almurayshid, Mansour
author_facet Alanazi, Sitah Fahad
Alarifi, Haya
Alshehri, Abdullah
Almurayshid, Mansour
author_sort Alanazi, Sitah Fahad
collection PubMed
description OBJECTIVES: It is essential to study the dosimetric performance and reliability of personal dosimeters. This study examines and compares the responses of two commercial thermoluminescence dosimeters (TLDs), the TLD-100 and the MTS-N. METHODS: We compared the two TLDs to various parameters such as energy dependence, linearity, homogeneity, reproducibility, light sensitivity (zero point), angular dependence, and temperature effects using the IEC 61066 standard. RESULTS: The results acquired showed that both TLD materials show linear behavior as indicated by the quality of the fit. In addition, the angular dependence results for both detectors show that all dose responses are within the range of acceptable values. However, the TLD-100 outperformed the MTS-N in terms of light sensitivity reproducibility for all detectors together, while the MTS-N outperforms the TLD-100 for each detector independently and that showed TLD-100 has more stability than MTS-N. The MTS-N shows better batch homogeneity (10.84%) than TLD-100 (13.65%). The effect of temperature in signal loss was clearer at higher temperature 65°C and it was however below ±30%. CONCLUSIONS: The overall results for dosimetric properties determined in terms of dose equivalents for all combinations of detectors are satisfactory. The MTS-N cards have better results in the energy dependence, angular dependency, batch homogeneity and less signal fading, whereas the TLD-100 cards are less sensitive to light and more reproducible. ADVANCES IN KNOWLEDGE: Although previous studies showed several types of comparisons between TLDs, they have used limited parameters and different data analysis. This study has dealt with more comprehensive characterization methods and examinations combining TLD-100 and MTS-N cards.
format Online
Article
Text
id pubmed-10301716
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The British Institute of Radiology.
record_format MEDLINE/PubMed
spelling pubmed-103017162023-06-29 Response evaluation of two commercial thermoluminescence dosimeters (TLDs) against different parameters Alanazi, Sitah Fahad Alarifi, Haya Alshehri, Abdullah Almurayshid, Mansour BJR Open Original Research OBJECTIVES: It is essential to study the dosimetric performance and reliability of personal dosimeters. This study examines and compares the responses of two commercial thermoluminescence dosimeters (TLDs), the TLD-100 and the MTS-N. METHODS: We compared the two TLDs to various parameters such as energy dependence, linearity, homogeneity, reproducibility, light sensitivity (zero point), angular dependence, and temperature effects using the IEC 61066 standard. RESULTS: The results acquired showed that both TLD materials show linear behavior as indicated by the quality of the fit. In addition, the angular dependence results for both detectors show that all dose responses are within the range of acceptable values. However, the TLD-100 outperformed the MTS-N in terms of light sensitivity reproducibility for all detectors together, while the MTS-N outperforms the TLD-100 for each detector independently and that showed TLD-100 has more stability than MTS-N. The MTS-N shows better batch homogeneity (10.84%) than TLD-100 (13.65%). The effect of temperature in signal loss was clearer at higher temperature 65°C and it was however below ±30%. CONCLUSIONS: The overall results for dosimetric properties determined in terms of dose equivalents for all combinations of detectors are satisfactory. The MTS-N cards have better results in the energy dependence, angular dependency, batch homogeneity and less signal fading, whereas the TLD-100 cards are less sensitive to light and more reproducible. ADVANCES IN KNOWLEDGE: Although previous studies showed several types of comparisons between TLDs, they have used limited parameters and different data analysis. This study has dealt with more comprehensive characterization methods and examinations combining TLD-100 and MTS-N cards. The British Institute of Radiology. 2023-04-19 /pmc/articles/PMC10301716/ /pubmed/37389000 http://dx.doi.org/10.1259/bjro.20220035 Text en © 2023 The Authors. Published by the British Institute of Radiology https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
spellingShingle Original Research
Alanazi, Sitah Fahad
Alarifi, Haya
Alshehri, Abdullah
Almurayshid, Mansour
Response evaluation of two commercial thermoluminescence dosimeters (TLDs) against different parameters
title Response evaluation of two commercial thermoluminescence dosimeters (TLDs) against different parameters
title_full Response evaluation of two commercial thermoluminescence dosimeters (TLDs) against different parameters
title_fullStr Response evaluation of two commercial thermoluminescence dosimeters (TLDs) against different parameters
title_full_unstemmed Response evaluation of two commercial thermoluminescence dosimeters (TLDs) against different parameters
title_short Response evaluation of two commercial thermoluminescence dosimeters (TLDs) against different parameters
title_sort response evaluation of two commercial thermoluminescence dosimeters (tlds) against different parameters
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301716/
https://www.ncbi.nlm.nih.gov/pubmed/37389000
http://dx.doi.org/10.1259/bjro.20220035
work_keys_str_mv AT alanazisitahfahad responseevaluationoftwocommercialthermoluminescencedosimeterstldsagainstdifferentparameters
AT alarifihaya responseevaluationoftwocommercialthermoluminescencedosimeterstldsagainstdifferentparameters
AT alshehriabdullah responseevaluationoftwocommercialthermoluminescencedosimeterstldsagainstdifferentparameters
AT almurayshidmansour responseevaluationoftwocommercialthermoluminescencedosimeterstldsagainstdifferentparameters