Cargando…
Effect of Gait Speed on Trajectory Prediction Using Deep Learning Models for Exoskeleton Applications
Gait speed is an important biomechanical determinant of gait patterns, with joint kinematics being influenced by it. This study aims to explore the effectiveness of fully connected neural networks (FCNNs), with a potential application for exoskeleton control, in predicting gait trajectories at varyi...
Autores principales: | Kolaghassi, Rania, Marcelli, Gianluca, Sirlantzis, Konstantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301853/ https://www.ncbi.nlm.nih.gov/pubmed/37420852 http://dx.doi.org/10.3390/s23125687 |
Ejemplares similares
-
Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders
por: Kolaghassi, Rania, et al.
Publicado: (2022) -
Design and Control of a Single-Leg Exoskeleton with Gravity Compensation for Children with Unilateral Cerebral Palsy
por: Sarajchi, Mohammadhadi, et al.
Publicado: (2023) -
An annotated water-filled, and dry potholes dataset for deep learning applications
por: Dib, Jihad, et al.
Publicado: (2023) -
Gait Trajectory Prediction on an Embedded Microcontroller Using Deep Learning
por: Karakish, Mohamed, et al.
Publicado: (2022) -
Train vs. Play: Evaluating the Effects of Gamified and Non-Gamified Wheelchair Skills Training Using Virtual Reality
por: Zorzi, Chantal, et al.
Publicado: (2023)