Cargando…
MAB-DrNet: Bearing Fault Diagnosis Method Based on an Improved Dilated Convolutional Neural Network
Rolling bearing fault diagnosis is of great significance to the safe and reliable operation of manufacturing equipment. In the actual complex environment, the collected bearing signals usually contain a large amount of noises from the resonances of the environment and other components, resulting in...
Autores principales: | Zhang, Feiqing, Yin, Zhenyu, Xu, Fulong, Li, Yue, Xu, Guangyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301859/ https://www.ncbi.nlm.nih.gov/pubmed/37420699 http://dx.doi.org/10.3390/s23125532 |
Ejemplares similares
-
Application of Convolutional Neural Network in Motor Bearing Fault Diagnosis
por: Zhou, Shuiqin, et al.
Publicado: (2022) -
An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
por: Xu, Meng, et al.
Publicado: (2023) -
Bearing-Fault Diagnosis with Signal-to-RGB Image Mapping and Multichannel Multiscale Convolutional Neural Network
por: Xu, Ming, et al.
Publicado: (2022) -
Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph
por: Li, Zhibo, et al.
Publicado: (2022) -
Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform
por: Li, Guoqiang, et al.
Publicado: (2019)