Cargando…
DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein–Ligand Interaction Prediction
The core of large-scale drug virtual screening is to select the binders accurately and efficiently with high affinity from large libraries of small molecules in which non-binders are usually dominant. The binding affinity is significantly influenced by the protein pocket, ligand spatial information,...
Autores principales: | Zhang, Haiping, Saravanan, Konda Mani, Zhang, John Z. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301867/ https://www.ncbi.nlm.nih.gov/pubmed/37375246 http://dx.doi.org/10.3390/molecules28124691 |
Ejemplares similares
-
DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation
por: Zhang, Haiping, et al.
Publicado: (2020) -
DeepBindRG: a deep learning based method for estimating effective protein–ligand affinity
por: Zhang, Haiping, et al.
Publicado: (2019) -
CR-GCN: Channel-Relationships-Based Graph Convolutional Network for EEG Emotion Recognition
por: Jia, Jingjing, et al.
Publicado: (2022) -
scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics
por: Song, Qianqian, et al.
Publicado: (2021) -
DualGCN: a dual graph convolutional network model to predict cancer drug response
por: Ma, Tianxing, et al.
Publicado: (2022)