Cargando…

YOLO-Weld: A Modified YOLOv5-Based Weld Feature Detection Network for Extreme Weld Noise

Weld feature point detection is a key technology for welding trajectory planning and tracking. Existing two-stage detection methods and conventional convolutional neural network (CNN)-based approaches encounter performance bottlenecks under extreme welding noise conditions. To better obtain accurate...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Ang, Fan, Zhuoxuan, Li, Anning, Le, Qiaoyue, Wu, Dongting, Du, Fuxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301933/
https://www.ncbi.nlm.nih.gov/pubmed/37420805
http://dx.doi.org/10.3390/s23125640
Descripción
Sumario:Weld feature point detection is a key technology for welding trajectory planning and tracking. Existing two-stage detection methods and conventional convolutional neural network (CNN)-based approaches encounter performance bottlenecks under extreme welding noise conditions. To better obtain accurate weld feature point locations in high-noise environments, we propose a feature point detection network, YOLO-Weld, based on an improved You Only Look Once version 5 (YOLOv5). By introducing the reparameterized convolutional neural network (RepVGG) module, the network structure is optimized, enhancing detection speed. The utilization of a normalization-based attention module (NAM) in the network enhances the network’s perception of feature points. A lightweight decoupled head, RD-Head, is designed to improve classification and regression accuracy. Furthermore, a welding noise generation method is proposed, increasing the model’s robustness in extreme noise environments. Finally, the model is tested on a custom dataset of five weld types, demonstrating better performance than two-stage detection methods and conventional CNN approaches. The proposed model can accurately detect feature points in high-noise environments while meeting real-time welding requirements. In terms of the model’s performance, the average error of detecting feature points in images is 2.100 pixels, while the average error in the world coordinate system is 0.114 mm, sufficiently meeting the accuracy needs of various practical welding tasks.