Cargando…
A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity
Virus-encoded microRNAs were first reported in the Epstein–Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301948/ https://www.ncbi.nlm.nih.gov/pubmed/37368333 http://dx.doi.org/10.3390/ncrna9030033 |
_version_ | 1785064933525815296 |
---|---|
author | Greco, Francesco Lorefice, Elisa Carissimi, Claudia Laudadio, Ilaria Ciccosanti, Fabiola Di Rienzo, Martina Colavita, Francesca Meschi, Silvia Maggi, Fabrizio Fimia, Gian Maria Fulci, Valerio |
author_facet | Greco, Francesco Lorefice, Elisa Carissimi, Claudia Laudadio, Ilaria Ciccosanti, Fabiola Di Rienzo, Martina Colavita, Francesca Meschi, Silvia Maggi, Fabrizio Fimia, Gian Maria Fulci, Valerio |
author_sort | Greco, Francesco |
collection | PubMed |
description | Virus-encoded microRNAs were first reported in the Epstein–Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak of the SARS-CoV-2 pandemic, several studies have predicted and, in some cases, experimentally validated miRNAs originating from the positive strand of the SARS-CoV-2 genome. By integrating NGS data analysis and qRT-PCR approaches, we found that SARS-CoV-2 also encodes for a viral miRNA arising from the minus (antisense) strand of the viral genome, in the region encoding for ORF1ab, herein referred to as SARS-CoV-2-miR-AS1. Our data show that the expression of this microRNA increases in a time course analysis of SARS-CoV-2 infected cells. Furthermore, enoxacin treatment enhances the accumulation of the mature SARS-CoV-2-miR-AS1 in SARS-CoV-2 infected cells, arguing for a Dicer-dependent processing of this small RNA. In silico analysis suggests that SARS-CoV-2-miR-AS1 targets a set of genes which are translationally repressed during SARS-CoV-2 infection. We experimentally validated that SARS-CoV-2-miR-AS1 targets FOS, thus repressing the AP-1 transcription factor activity in human cells. |
format | Online Article Text |
id | pubmed-10301948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103019482023-06-29 A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity Greco, Francesco Lorefice, Elisa Carissimi, Claudia Laudadio, Ilaria Ciccosanti, Fabiola Di Rienzo, Martina Colavita, Francesca Meschi, Silvia Maggi, Fabrizio Fimia, Gian Maria Fulci, Valerio Noncoding RNA Communication Virus-encoded microRNAs were first reported in the Epstein–Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak of the SARS-CoV-2 pandemic, several studies have predicted and, in some cases, experimentally validated miRNAs originating from the positive strand of the SARS-CoV-2 genome. By integrating NGS data analysis and qRT-PCR approaches, we found that SARS-CoV-2 also encodes for a viral miRNA arising from the minus (antisense) strand of the viral genome, in the region encoding for ORF1ab, herein referred to as SARS-CoV-2-miR-AS1. Our data show that the expression of this microRNA increases in a time course analysis of SARS-CoV-2 infected cells. Furthermore, enoxacin treatment enhances the accumulation of the mature SARS-CoV-2-miR-AS1 in SARS-CoV-2 infected cells, arguing for a Dicer-dependent processing of this small RNA. In silico analysis suggests that SARS-CoV-2-miR-AS1 targets a set of genes which are translationally repressed during SARS-CoV-2 infection. We experimentally validated that SARS-CoV-2-miR-AS1 targets FOS, thus repressing the AP-1 transcription factor activity in human cells. MDPI 2023-05-23 /pmc/articles/PMC10301948/ /pubmed/37368333 http://dx.doi.org/10.3390/ncrna9030033 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Greco, Francesco Lorefice, Elisa Carissimi, Claudia Laudadio, Ilaria Ciccosanti, Fabiola Di Rienzo, Martina Colavita, Francesca Meschi, Silvia Maggi, Fabrizio Fimia, Gian Maria Fulci, Valerio A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity |
title | A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity |
title_full | A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity |
title_fullStr | A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity |
title_full_unstemmed | A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity |
title_short | A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity |
title_sort | microrna arising from the negative strand of sars-cov-2 genome targets fos to reduce ap-1 activity |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301948/ https://www.ncbi.nlm.nih.gov/pubmed/37368333 http://dx.doi.org/10.3390/ncrna9030033 |
work_keys_str_mv | AT grecofrancesco amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT loreficeelisa amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT carissimiclaudia amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT laudadioilaria amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT ciccosantifabiola amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT dirienzomartina amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT colavitafrancesca amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT meschisilvia amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT maggifabrizio amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT fimiagianmaria amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT fulcivalerio amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT grecofrancesco micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT loreficeelisa micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT carissimiclaudia micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT laudadioilaria micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT ciccosantifabiola micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT dirienzomartina micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT colavitafrancesca micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT meschisilvia micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT maggifabrizio micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT fimiagianmaria micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity AT fulcivalerio micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity |