Cargando…

A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity

Virus-encoded microRNAs were first reported in the Epstein–Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak...

Descripción completa

Detalles Bibliográficos
Autores principales: Greco, Francesco, Lorefice, Elisa, Carissimi, Claudia, Laudadio, Ilaria, Ciccosanti, Fabiola, Di Rienzo, Martina, Colavita, Francesca, Meschi, Silvia, Maggi, Fabrizio, Fimia, Gian Maria, Fulci, Valerio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301948/
https://www.ncbi.nlm.nih.gov/pubmed/37368333
http://dx.doi.org/10.3390/ncrna9030033
_version_ 1785064933525815296
author Greco, Francesco
Lorefice, Elisa
Carissimi, Claudia
Laudadio, Ilaria
Ciccosanti, Fabiola
Di Rienzo, Martina
Colavita, Francesca
Meschi, Silvia
Maggi, Fabrizio
Fimia, Gian Maria
Fulci, Valerio
author_facet Greco, Francesco
Lorefice, Elisa
Carissimi, Claudia
Laudadio, Ilaria
Ciccosanti, Fabiola
Di Rienzo, Martina
Colavita, Francesca
Meschi, Silvia
Maggi, Fabrizio
Fimia, Gian Maria
Fulci, Valerio
author_sort Greco, Francesco
collection PubMed
description Virus-encoded microRNAs were first reported in the Epstein–Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak of the SARS-CoV-2 pandemic, several studies have predicted and, in some cases, experimentally validated miRNAs originating from the positive strand of the SARS-CoV-2 genome. By integrating NGS data analysis and qRT-PCR approaches, we found that SARS-CoV-2 also encodes for a viral miRNA arising from the minus (antisense) strand of the viral genome, in the region encoding for ORF1ab, herein referred to as SARS-CoV-2-miR-AS1. Our data show that the expression of this microRNA increases in a time course analysis of SARS-CoV-2 infected cells. Furthermore, enoxacin treatment enhances the accumulation of the mature SARS-CoV-2-miR-AS1 in SARS-CoV-2 infected cells, arguing for a Dicer-dependent processing of this small RNA. In silico analysis suggests that SARS-CoV-2-miR-AS1 targets a set of genes which are translationally repressed during SARS-CoV-2 infection. We experimentally validated that SARS-CoV-2-miR-AS1 targets FOS, thus repressing the AP-1 transcription factor activity in human cells.
format Online
Article
Text
id pubmed-10301948
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103019482023-06-29 A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity Greco, Francesco Lorefice, Elisa Carissimi, Claudia Laudadio, Ilaria Ciccosanti, Fabiola Di Rienzo, Martina Colavita, Francesca Meschi, Silvia Maggi, Fabrizio Fimia, Gian Maria Fulci, Valerio Noncoding RNA Communication Virus-encoded microRNAs were first reported in the Epstein–Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak of the SARS-CoV-2 pandemic, several studies have predicted and, in some cases, experimentally validated miRNAs originating from the positive strand of the SARS-CoV-2 genome. By integrating NGS data analysis and qRT-PCR approaches, we found that SARS-CoV-2 also encodes for a viral miRNA arising from the minus (antisense) strand of the viral genome, in the region encoding for ORF1ab, herein referred to as SARS-CoV-2-miR-AS1. Our data show that the expression of this microRNA increases in a time course analysis of SARS-CoV-2 infected cells. Furthermore, enoxacin treatment enhances the accumulation of the mature SARS-CoV-2-miR-AS1 in SARS-CoV-2 infected cells, arguing for a Dicer-dependent processing of this small RNA. In silico analysis suggests that SARS-CoV-2-miR-AS1 targets a set of genes which are translationally repressed during SARS-CoV-2 infection. We experimentally validated that SARS-CoV-2-miR-AS1 targets FOS, thus repressing the AP-1 transcription factor activity in human cells. MDPI 2023-05-23 /pmc/articles/PMC10301948/ /pubmed/37368333 http://dx.doi.org/10.3390/ncrna9030033 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Greco, Francesco
Lorefice, Elisa
Carissimi, Claudia
Laudadio, Ilaria
Ciccosanti, Fabiola
Di Rienzo, Martina
Colavita, Francesca
Meschi, Silvia
Maggi, Fabrizio
Fimia, Gian Maria
Fulci, Valerio
A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity
title A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity
title_full A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity
title_fullStr A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity
title_full_unstemmed A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity
title_short A microRNA Arising from the Negative Strand of SARS-CoV-2 Genome Targets FOS to Reduce AP-1 Activity
title_sort microrna arising from the negative strand of sars-cov-2 genome targets fos to reduce ap-1 activity
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301948/
https://www.ncbi.nlm.nih.gov/pubmed/37368333
http://dx.doi.org/10.3390/ncrna9030033
work_keys_str_mv AT grecofrancesco amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT loreficeelisa amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT carissimiclaudia amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT laudadioilaria amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT ciccosantifabiola amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT dirienzomartina amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT colavitafrancesca amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT meschisilvia amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT maggifabrizio amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT fimiagianmaria amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT fulcivalerio amicrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT grecofrancesco micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT loreficeelisa micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT carissimiclaudia micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT laudadioilaria micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT ciccosantifabiola micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT dirienzomartina micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT colavitafrancesca micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT meschisilvia micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT maggifabrizio micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT fimiagianmaria micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity
AT fulcivalerio micrornaarisingfromthenegativestrandofsarscov2genometargetsfostoreduceap1activity