Cargando…

Widely Targeted HPLC-MS/MS Metabolomics Analysis Reveals Natural Metabolic Insights in Insects

Insect metabolites play vital roles in regulating the physiology, behavior, and numerous adaptations of insects, which has contributed to them becoming the largest class of Animalia. However, systematic metabolomics within the insects is still unclear. The present study performed a widely targeted m...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhaoxin, Cheng, Yunlong, Chen, Jinxin, Xu, Weijun, Ma, Wentao, Li, Sheng, Du, Erxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301993/
https://www.ncbi.nlm.nih.gov/pubmed/37367893
http://dx.doi.org/10.3390/metabo13060735
Descripción
Sumario:Insect metabolites play vital roles in regulating the physiology, behavior, and numerous adaptations of insects, which has contributed to them becoming the largest class of Animalia. However, systematic metabolomics within the insects is still unclear. The present study performed a widely targeted metabolomics analysis based on the HPLC-MS/MS technology to construct a novel integrated metabolic database presenting comprehensive multimetabolite profiles from nine insect species across three metamorphosis types. A total of 1442 metabolites were identified, including amino acids and their metabolites, organic acids and their derivatives, fatty acids (FAs), glycerophospholipids (GPs), nucleotides and their metabolites, and benzene and its substituted derivatives. Among them, 622 metabolites were used to generate a 0 and 1 matrix based on their presence or absence, and these metabolites were enriched in arachidonic acid metabolism, tyrosine metabolism, phenylalanine metabolism, and insect hormone biosynthesis pathways. Our study revealed that there is a high coincidence between the evolutionary relationships of the species and the hierarchical cluster based on the types of metabolites, while the quantities of the metabolites show a high diversity among species. The metabolome of the nine representative insects provides an important platform for implementing the analysis of insect systemic metabolites and biological events at the metabolic level.