Cargando…
Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture
Drought is being annually exacerbated by recent global warming, leading to crucial damage of crop growth and final yields. Soybean, one of the most consumed crops worldwide, has also been affected in the process. The development of a resistant cultivar is required to solve this problem, which is con...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302013/ https://www.ncbi.nlm.nih.gov/pubmed/37375956 http://dx.doi.org/10.3390/plants12122331 |
_version_ | 1785064948666204160 |
---|---|
author | Kim, JaeYoung Lee, Chaewon Park, JiEun Kim, Nyunhee Kim, Song-Lim Baek, JeongHo Chung, Yong-Suk Kim, Kyunghwan |
author_facet | Kim, JaeYoung Lee, Chaewon Park, JiEun Kim, Nyunhee Kim, Song-Lim Baek, JeongHo Chung, Yong-Suk Kim, Kyunghwan |
author_sort | Kim, JaeYoung |
collection | PubMed |
description | Drought is being annually exacerbated by recent global warming, leading to crucial damage of crop growth and final yields. Soybean, one of the most consumed crops worldwide, has also been affected in the process. The development of a resistant cultivar is required to solve this problem, which is considered the most efficient method for crop producers. To accelerate breeding cycles, genetic engineering and high-throughput phenotyping technologies have replaced conventional breeding methods. However, the current novel phenotyping method still needs to be optimized by species and varieties. Therefore, we aimed to assess the most appropriate and effective phenotypes for evaluating drought stress by applying a high-throughput image-based method on the nested association mapping (NAM) population of soybeans. The acquired image-based traits from the phenotyping platform were divided into three large categories—area, boundary, and color—and demonstrated an aspect for each characteristic. Analysis on categorized traits interpreted stress responses in morphological and physiological changes. The evaluation of drought stress regardless of varieties was possible by combining various image-based traits. We might suggest that a combination of image-based traits obtained using computer vision can be more efficient than using only one trait for the precision agriculture. |
format | Online Article Text |
id | pubmed-10302013 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103020132023-06-29 Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture Kim, JaeYoung Lee, Chaewon Park, JiEun Kim, Nyunhee Kim, Song-Lim Baek, JeongHo Chung, Yong-Suk Kim, Kyunghwan Plants (Basel) Article Drought is being annually exacerbated by recent global warming, leading to crucial damage of crop growth and final yields. Soybean, one of the most consumed crops worldwide, has also been affected in the process. The development of a resistant cultivar is required to solve this problem, which is considered the most efficient method for crop producers. To accelerate breeding cycles, genetic engineering and high-throughput phenotyping technologies have replaced conventional breeding methods. However, the current novel phenotyping method still needs to be optimized by species and varieties. Therefore, we aimed to assess the most appropriate and effective phenotypes for evaluating drought stress by applying a high-throughput image-based method on the nested association mapping (NAM) population of soybeans. The acquired image-based traits from the phenotyping platform were divided into three large categories—area, boundary, and color—and demonstrated an aspect for each characteristic. Analysis on categorized traits interpreted stress responses in morphological and physiological changes. The evaluation of drought stress regardless of varieties was possible by combining various image-based traits. We might suggest that a combination of image-based traits obtained using computer vision can be more efficient than using only one trait for the precision agriculture. MDPI 2023-06-15 /pmc/articles/PMC10302013/ /pubmed/37375956 http://dx.doi.org/10.3390/plants12122331 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, JaeYoung Lee, Chaewon Park, JiEun Kim, Nyunhee Kim, Song-Lim Baek, JeongHo Chung, Yong-Suk Kim, Kyunghwan Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture |
title | Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture |
title_full | Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture |
title_fullStr | Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture |
title_full_unstemmed | Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture |
title_short | Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture |
title_sort | comparison of various drought resistance traits in soybean (glycine max l.) based on image analysis for precision agriculture |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302013/ https://www.ncbi.nlm.nih.gov/pubmed/37375956 http://dx.doi.org/10.3390/plants12122331 |
work_keys_str_mv | AT kimjaeyoung comparisonofvariousdroughtresistancetraitsinsoybeanglycinemaxlbasedonimageanalysisforprecisionagriculture AT leechaewon comparisonofvariousdroughtresistancetraitsinsoybeanglycinemaxlbasedonimageanalysisforprecisionagriculture AT parkjieun comparisonofvariousdroughtresistancetraitsinsoybeanglycinemaxlbasedonimageanalysisforprecisionagriculture AT kimnyunhee comparisonofvariousdroughtresistancetraitsinsoybeanglycinemaxlbasedonimageanalysisforprecisionagriculture AT kimsonglim comparisonofvariousdroughtresistancetraitsinsoybeanglycinemaxlbasedonimageanalysisforprecisionagriculture AT baekjeongho comparisonofvariousdroughtresistancetraitsinsoybeanglycinemaxlbasedonimageanalysisforprecisionagriculture AT chungyongsuk comparisonofvariousdroughtresistancetraitsinsoybeanglycinemaxlbasedonimageanalysisforprecisionagriculture AT kimkyunghwan comparisonofvariousdroughtresistancetraitsinsoybeanglycinemaxlbasedonimageanalysisforprecisionagriculture |