Cargando…
Deep Learning Approaches with Digital Mammography for Evaluating Breast Cancer Risk, a Narrative Review
Breast cancer remains the leading cause of cancer-related deaths in women worldwide. Current screening regimens and clinical breast cancer risk assessment models use risk factors such as demographics and patient history to guide policy and assess risk. Applications of artificial intelligence methods...
Autores principales: | Siddique, Maham, Liu, Michael, Duong, Phuong, Jambawalikar, Sachin, Ha, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302037/ https://www.ncbi.nlm.nih.gov/pubmed/37368543 http://dx.doi.org/10.3390/tomography9030091 |
Ejemplares similares
-
Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning
por: Wang, Jinhua, et al.
Publicado: (2016) -
Deep Learning to Improve Breast Cancer Detection on Screening Mammography
por: Shen, Li, et al.
Publicado: (2019) -
Using Deep Neural Network Approach for Multiple-Class Assessment of Digital Mammography
por: Hsu, Shih-Yen, et al.
Publicado: (2022) -
Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women
por: Kim, Hayoung, et al.
Publicado: (2023) -
Diagnostic value of mammography density of breast masses by using deep learning
por: Chen, Qian-qian, et al.
Publicado: (2023)