Cargando…
Nondestructive Methods of Pathogen Detection: Importance of Mosquito Integrity in Studies of Disease Transmission and Control
Mosquitoes are vectors of many pathogens, including viruses, protozoans, and helminths, spreading these pathogens to humans as well as to wild and domestic animals. As the identification of species and the biological characterization of mosquito vectors are cornerstones for understanding patterns of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302199/ https://www.ncbi.nlm.nih.gov/pubmed/37375506 http://dx.doi.org/10.3390/pathogens12060816 |
Sumario: | Mosquitoes are vectors of many pathogens, including viruses, protozoans, and helminths, spreading these pathogens to humans as well as to wild and domestic animals. As the identification of species and the biological characterization of mosquito vectors are cornerstones for understanding patterns of disease transmission, and the design of control strategies, we conducted a literature review on the current use of noninvasive and nondestructive techniques for pathogen detection in mosquitoes, highlighting the importance of their taxonomic status and systematics, and some gaps in the knowledge of their vectorial capacity. Here, we summarized the alternative techniques for pathogen detection in mosquitoes based on both laboratory and field studies. Parasite infection and dissemination by mosquitoes can also be obtained via analyses of saliva- and excreta-based techniques or of the whole mosquito body, using a near-infrared spectrometry (NIRS) approach. Further research should be encouraged to seek strategies for detecting target pathogens while preserving mosquito morphology, especially in biodiversity hotspot regions, thus enabling the discovery of cryptic or new species, and the determination of more accurate taxonomic, parasitological, and epidemiological patterns. |
---|