Cargando…
Digital Twin-Driven Tool Condition Monitoring for the Milling Process
Exact observing and forecasting tool conditions fundamentally affect cutting execution, bringing further developed workpiece machining accuracy and lower machining costs. Because of the unpredictability and time-differing nature of the cutting system, existing methodologies cannot achieve ideal over...
Autores principales: | Natarajan, Sriraamshanjiev, Thangamuthu, Mohanraj, Gnanasekaran, Sakthivel, Rakkiyannan, Jegadeeshwaran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302249/ https://www.ncbi.nlm.nih.gov/pubmed/37420597 http://dx.doi.org/10.3390/s23125431 |
Ejemplares similares
-
Development of Online Tool Wear-Out Detection System Using Silver–Polyester Thick Film Sensor for Low-Duty Cycle Machining Operations
por: Rakkiyannan, Jegadeeshwaran, et al.
Publicado: (2022) -
A Comprehensive Approach for Detecting Brake Pad Defects Using Histogram and Wavelet Features with Nested Dichotomy Family Classifiers
por: Gnanasekaran, Sakthivel, et al.
Publicado: (2023) -
Application of Machine Learning Algorithms for Tool Condition Monitoring in Milling Chipboard Process
por: Przybyś-Małaczek, Agata, et al.
Publicado: (2023) -
A Multisensor Fusion Method for Tool Condition Monitoring in Milling
por: Zhou, Yuqing, et al.
Publicado: (2018) -
Digital twin-driven smart supply chain
por: Wang, Lu, et al.
Publicado: (2022)