Cargando…

Shape Discrimination of Individual Aerosol Particles Using Light Scattering

We established an experimental apparatus by combining polarized light scattering and angle-resolved light scattering measurement technology to rapidly identify the shape of an individual aerosol particle. The experimental data of scattered light of Oleic acid, rod-shaped Silicon dioxide, and other p...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Yan, Ding, Lei, Wang, Yingping, Zheng, Haiyang, Fang, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302335/
https://www.ncbi.nlm.nih.gov/pubmed/37420631
http://dx.doi.org/10.3390/s23125464
Descripción
Sumario:We established an experimental apparatus by combining polarized light scattering and angle-resolved light scattering measurement technology to rapidly identify the shape of an individual aerosol particle. The experimental data of scattered light of Oleic acid, rod-shaped Silicon dioxide, and other particles with typical shape characteristics were analyzed statistically. To better study the relationship between the shape of particles and the properties of scattered light, the partial least squares discriminant analysis (PLS-DA) method was used to analyze the scattered light of aerosol samples based on the size screening of particles, and the shape recognition and classification method of the individual aerosol particle was established based on the analysis of the spectral data after nonlinear processing and grouping by particle size with the area under the receiver operating characteristic curve (AUC) as reference. The experimental results show that the proposed classification method has a good discrimination ability for spherical, rod-shaped, and other non-spherical particles, which can provide more information for atmospheric aerosol measurement, and has application value for traceability and exposure hazard assessment of aerosol particles.