Cargando…
Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity
Boron (B) toxicity is an important stressor that negatively affects maize yield and the quality of the produce. The excessive B content in agricultural lands is a growing problem due to the increase in arid and semi-arid areas because of climate change. Recently, two Peruvian maize landraces, Sama a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302400/ https://www.ncbi.nlm.nih.gov/pubmed/37375947 http://dx.doi.org/10.3390/plants12122322 |
_version_ | 1785065036881854464 |
---|---|
author | Mamani-Huarcaya, Betty Maribel Navarro-Gochicoa, María Teresa Herrera-Rodríguez, María Begoña Camacho-Cristóbal, Juan José Ceacero, Carlos Juan Fernández Cutire, Óscar González-Fontes, Agustín Rexach, Jesús |
author_facet | Mamani-Huarcaya, Betty Maribel Navarro-Gochicoa, María Teresa Herrera-Rodríguez, María Begoña Camacho-Cristóbal, Juan José Ceacero, Carlos Juan Fernández Cutire, Óscar González-Fontes, Agustín Rexach, Jesús |
author_sort | Mamani-Huarcaya, Betty Maribel |
collection | PubMed |
description | Boron (B) toxicity is an important stressor that negatively affects maize yield and the quality of the produce. The excessive B content in agricultural lands is a growing problem due to the increase in arid and semi-arid areas because of climate change. Recently, two Peruvian maize landraces, Sama and Pachía, were physiologically characterized based on their tolerance to B toxicity, the former being more tolerant to B excess than Pachía. However, many aspects regarding the molecular mechanisms of these two maize landraces against B toxicity are still unknown. In this study, a leaf proteomic analysis of Sama and Pachía was performed. Out of a total of 2793 proteins identified, only 303 proteins were differentially accumulated. Functional analysis indicated that many of these proteins are involved in transcription and translation processes, amino acid metabolism, photosynthesis, carbohydrate metabolism, protein degradation, and protein stabilization and folding. Compared to Sama, Pachía had a higher number of differentially expressed proteins related to protein degradation, and transcription and translation processes under B toxicity conditions, which might reflect the greater protein damage caused by B toxicity in Pachía. Our results suggest that the higher tolerance to B toxicity of Sama can be attributed to more stable photosynthesis, which can prevent damage caused by stromal over-reduction under this stress condition. |
format | Online Article Text |
id | pubmed-10302400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103024002023-06-29 Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity Mamani-Huarcaya, Betty Maribel Navarro-Gochicoa, María Teresa Herrera-Rodríguez, María Begoña Camacho-Cristóbal, Juan José Ceacero, Carlos Juan Fernández Cutire, Óscar González-Fontes, Agustín Rexach, Jesús Plants (Basel) Article Boron (B) toxicity is an important stressor that negatively affects maize yield and the quality of the produce. The excessive B content in agricultural lands is a growing problem due to the increase in arid and semi-arid areas because of climate change. Recently, two Peruvian maize landraces, Sama and Pachía, were physiologically characterized based on their tolerance to B toxicity, the former being more tolerant to B excess than Pachía. However, many aspects regarding the molecular mechanisms of these two maize landraces against B toxicity are still unknown. In this study, a leaf proteomic analysis of Sama and Pachía was performed. Out of a total of 2793 proteins identified, only 303 proteins were differentially accumulated. Functional analysis indicated that many of these proteins are involved in transcription and translation processes, amino acid metabolism, photosynthesis, carbohydrate metabolism, protein degradation, and protein stabilization and folding. Compared to Sama, Pachía had a higher number of differentially expressed proteins related to protein degradation, and transcription and translation processes under B toxicity conditions, which might reflect the greater protein damage caused by B toxicity in Pachía. Our results suggest that the higher tolerance to B toxicity of Sama can be attributed to more stable photosynthesis, which can prevent damage caused by stromal over-reduction under this stress condition. MDPI 2023-06-15 /pmc/articles/PMC10302400/ /pubmed/37375947 http://dx.doi.org/10.3390/plants12122322 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mamani-Huarcaya, Betty Maribel Navarro-Gochicoa, María Teresa Herrera-Rodríguez, María Begoña Camacho-Cristóbal, Juan José Ceacero, Carlos Juan Fernández Cutire, Óscar González-Fontes, Agustín Rexach, Jesús Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity |
title | Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity |
title_full | Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity |
title_fullStr | Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity |
title_full_unstemmed | Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity |
title_short | Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity |
title_sort | leaf proteomic analysis in seedlings of two maize landraces with different tolerance to boron toxicity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302400/ https://www.ncbi.nlm.nih.gov/pubmed/37375947 http://dx.doi.org/10.3390/plants12122322 |
work_keys_str_mv | AT mamanihuarcayabettymaribel leafproteomicanalysisinseedlingsoftwomaizelandraceswithdifferenttolerancetoborontoxicity AT navarrogochicoamariateresa leafproteomicanalysisinseedlingsoftwomaizelandraceswithdifferenttolerancetoborontoxicity AT herrerarodriguezmariabegona leafproteomicanalysisinseedlingsoftwomaizelandraceswithdifferenttolerancetoborontoxicity AT camachocristobaljuanjose leafproteomicanalysisinseedlingsoftwomaizelandraceswithdifferenttolerancetoborontoxicity AT ceacerocarlosjuan leafproteomicanalysisinseedlingsoftwomaizelandraceswithdifferenttolerancetoborontoxicity AT fernandezcutireoscar leafproteomicanalysisinseedlingsoftwomaizelandraceswithdifferenttolerancetoborontoxicity AT gonzalezfontesagustin leafproteomicanalysisinseedlingsoftwomaizelandraceswithdifferenttolerancetoborontoxicity AT rexachjesus leafproteomicanalysisinseedlingsoftwomaizelandraceswithdifferenttolerancetoborontoxicity |