Cargando…

Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract

Leather is often used to make comfortable shoes due to its soft and breathable nature. However, its innate ability to retain moisture, oxygen and nutrients renders it a suitable medium for the adsorption, growth, and survival of potentially pathogenic microorganisms. Consequently, the intimate conta...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Ngoc-Thang, Vu, Tien-Hieu, Bui, Van-Huan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302428/
https://www.ncbi.nlm.nih.gov/pubmed/37376280
http://dx.doi.org/10.3390/polym15122634
_version_ 1785065042719277056
author Nguyen, Ngoc-Thang
Vu, Tien-Hieu
Bui, Van-Huan
author_facet Nguyen, Ngoc-Thang
Vu, Tien-Hieu
Bui, Van-Huan
author_sort Nguyen, Ngoc-Thang
collection PubMed
description Leather is often used to make comfortable shoes due to its soft and breathable nature. However, its innate ability to retain moisture, oxygen and nutrients renders it a suitable medium for the adsorption, growth, and survival of potentially pathogenic microorganisms. Consequently, the intimate contact between the foot skin and the leather lining surface in shoes, which are subject to prolonged periods of sweating, may result in the transmission of pathogenic microorganisms and cause discomfort for the wearer. To address such issues, we modified pig leather with silver nanoparticles (AgPBL) that were bio-synthesized from Piper betle L. leaf extract as an antimicrobial agent via the padding method. The evidence of AgPBL embedded into the leather matrix, leather surface morphology and element profile of AgPBL-modified leather samples (pLeAg) was investigated using colorimetry, SEM, EDX, AAS and FTIR analyses. The colorimetric data confirmed that the pLeAg samples changed to a more brown color with higher wet pickup and AgPBL concentration, owing to the higher quantity of AgPBL uptake onto the leather surfaces. The antibacterial and antifungal activities of the pLeAg samples were both qualitatively and quantitatively evaluated using AATCC TM90, AATCC TM30 and ISO 16187:2013 test methods, approving a good synergistic antimicrobial efficiency of the modified leather against Escherichia coli and Staphylococcus aureus bacteria, a yeast Candida albicans and a mold Aspergillus niger. Additionally, the antimicrobial treatments of pig leather did not negatively impact its physico-mechanical properties, including tear strength, abrasion resistance, flex resistance, water vapour permeability and absorption, water absorption and desorption. These findings affirmed that the AgPBL-modified leather met all the requirements of upper lining according to the standard ISO 20882:2007 for making hygienic shoes.
format Online
Article
Text
id pubmed-10302428
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103024282023-06-29 Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract Nguyen, Ngoc-Thang Vu, Tien-Hieu Bui, Van-Huan Polymers (Basel) Article Leather is often used to make comfortable shoes due to its soft and breathable nature. However, its innate ability to retain moisture, oxygen and nutrients renders it a suitable medium for the adsorption, growth, and survival of potentially pathogenic microorganisms. Consequently, the intimate contact between the foot skin and the leather lining surface in shoes, which are subject to prolonged periods of sweating, may result in the transmission of pathogenic microorganisms and cause discomfort for the wearer. To address such issues, we modified pig leather with silver nanoparticles (AgPBL) that were bio-synthesized from Piper betle L. leaf extract as an antimicrobial agent via the padding method. The evidence of AgPBL embedded into the leather matrix, leather surface morphology and element profile of AgPBL-modified leather samples (pLeAg) was investigated using colorimetry, SEM, EDX, AAS and FTIR analyses. The colorimetric data confirmed that the pLeAg samples changed to a more brown color with higher wet pickup and AgPBL concentration, owing to the higher quantity of AgPBL uptake onto the leather surfaces. The antibacterial and antifungal activities of the pLeAg samples were both qualitatively and quantitatively evaluated using AATCC TM90, AATCC TM30 and ISO 16187:2013 test methods, approving a good synergistic antimicrobial efficiency of the modified leather against Escherichia coli and Staphylococcus aureus bacteria, a yeast Candida albicans and a mold Aspergillus niger. Additionally, the antimicrobial treatments of pig leather did not negatively impact its physico-mechanical properties, including tear strength, abrasion resistance, flex resistance, water vapour permeability and absorption, water absorption and desorption. These findings affirmed that the AgPBL-modified leather met all the requirements of upper lining according to the standard ISO 20882:2007 for making hygienic shoes. MDPI 2023-06-09 /pmc/articles/PMC10302428/ /pubmed/37376280 http://dx.doi.org/10.3390/polym15122634 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nguyen, Ngoc-Thang
Vu, Tien-Hieu
Bui, Van-Huan
Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract
title Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract
title_full Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract
title_fullStr Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract
title_full_unstemmed Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract
title_short Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract
title_sort antibacterial and antifungal fabrication of natural lining leather using bio-synthesized silver nanoparticles from piper betle l. leaf extract
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302428/
https://www.ncbi.nlm.nih.gov/pubmed/37376280
http://dx.doi.org/10.3390/polym15122634
work_keys_str_mv AT nguyenngocthang antibacterialandantifungalfabricationofnaturalliningleatherusingbiosynthesizedsilvernanoparticlesfrompiperbetlelleafextract
AT vutienhieu antibacterialandantifungalfabricationofnaturalliningleatherusingbiosynthesizedsilvernanoparticlesfrompiperbetlelleafextract
AT buivanhuan antibacterialandantifungalfabricationofnaturalliningleatherusingbiosynthesizedsilvernanoparticlesfrompiperbetlelleafextract