Cargando…

Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way

Optical neural networks can effectively address hardware constraints and parallel computing efficiency issues inherent in electronic neural networks. However, the inability to implement convolutional neural networks at the all-optical level remains a hurdle. In this work, we propose an optical diffr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Yaze, Cao, Yang, Wang, Gong, Pang, Yajun, Lang, Liying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302459/
https://www.ncbi.nlm.nih.gov/pubmed/37420913
http://dx.doi.org/10.3390/s23125749
Descripción
Sumario:Optical neural networks can effectively address hardware constraints and parallel computing efficiency issues inherent in electronic neural networks. However, the inability to implement convolutional neural networks at the all-optical level remains a hurdle. In this work, we propose an optical diffractive convolutional neural network (ODCNN) that is capable of performing image processing tasks in computer vision at the speed of light. We explore the application of the 4f system and the diffractive deep neural network (D [Formula: see text] NN) in neural networks. ODCNN is then simulated by combining the 4f system as an optical convolutional layer and the diffractive networks. We also examine the potential impact of nonlinear optical materials on this network. Numerical simulation results show that the addition of convolutional layers and nonlinear functions improves the classification accuracy of the network. We believe that the proposed ODCNN model can be the basic architecture for building optical convolutional networks.