Cargando…
Intelligent Bearing Fault Diagnosis Based on Feature Fusion of One-Dimensional Dilated CNN and Multi-Domain Signal Processing
Finding relevant features that can represent different types of faults under a noisy environment is the key to practical applications of intelligent fault diagnosis. However, high classification accuracy cannot be achieved with only a few simple empirical features, and advanced feature engineering a...
Autores principales: | Dong, Kaitai, Lotfipoor, Ashkan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302463/ https://www.ncbi.nlm.nih.gov/pubmed/37420773 http://dx.doi.org/10.3390/s23125607 |
Ejemplares similares
-
Bearing Fault Diagnosis via Improved One-Dimensional Multi-Scale Dilated CNN
por: He, Jiajun, et al.
Publicado: (2021) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022) -
Research on rolling bearing fault diagnosis based on multi-dimensional feature extraction and evidence fusion theory
por: Li, Jingchao, et al.
Publicado: (2019) -
Rolling Bearing Fault Diagnosis Using Multi-Sensor Data Fusion Based on 1D-CNN Model
por: Wang, Hongwei, et al.
Publicado: (2022) -
Evaluation of Different Bearing Fault Classifiers in Utilizing CNN Feature Extraction Ability
por: Xie, Wenlang, et al.
Publicado: (2022)