Cargando…
Unveiling the Potential of BenzylethyleneAryl–Urea Scaffolds for the Design of New Onco Immunomodulating Agents
This work focuses on the development of thirteen benzylethylenearyl ureas and one carbamate. After the synthesis and purification of the compounds, we studied their antiproliferative action on cell lines, such as HEK-293, and cancer ones, such as HT-29, MCF-7 or A-549, on the immune Jurkat T-cells a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302582/ https://www.ncbi.nlm.nih.gov/pubmed/37375756 http://dx.doi.org/10.3390/ph16060808 |
Sumario: | This work focuses on the development of thirteen benzylethylenearyl ureas and one carbamate. After the synthesis and purification of the compounds, we studied their antiproliferative action on cell lines, such as HEK-293, and cancer ones, such as HT-29, MCF-7 or A-549, on the immune Jurkat T-cells and endothelial cells HMEC-1. Compounds C.1, C.3, C.12 and C.14 were selected for further biological studies to establish their potential as immunomodulating agents. Some of the derivatives exhibited significant inhibitory effects on both targets: PD-L1 and VEGFR-2 in the HT-29 cell line, showing that urea C.12 is active against both targets. Some compounds could inhibit more than 50% of cancer cell proliferation compared to non-treated ones when assessed in co-cultures using HT-29 and THP-1 cells. In addition, they significantly reduced CD11b expression, which is a promising target for immune modulation in anticancer immunotherapies. |
---|