Cargando…
Automatic Post-Stroke Severity Assessment Using Novel Unsupervised Consensus Learning for Wearable and Camera-Based Sensor Datasets
Stroke survivors often suffer from movement impairments that significantly affect their daily activities. The advancements in sensor technology and IoT have provided opportunities to automate the assessment and rehabilitation process for stroke survivors. This paper aims to provide a smart post-stro...
Autores principales: | Razfar, Najmeh, Kashef, Rasha, Mohammadi, Farah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302735/ https://www.ncbi.nlm.nih.gov/pubmed/37420682 http://dx.doi.org/10.3390/s23125513 |
Ejemplares similares
-
Dataset of wearable sensors with possibilities for data exchange
por: Muzny, Miroslav, et al.
Publicado: (2019) -
A dataset for wearable sensors validation in gait analysis
por: Pierleoni, Paola, et al.
Publicado: (2020) -
Unsupervised machine learning using an imaging mass spectrometry dataset automatically reassembles grey and white matter
por: Nampei, Makoto, et al.
Publicado: (2019) -
Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors
por: Airaksinen, Manu, et al.
Publicado: (2020) -
Unsupervised Learning of Depth and Camera Pose with Feature Map Warping
por: Guo, Ente, et al.
Publicado: (2021)