Cargando…

Construction of Microporous Zincophilic Interface for Stable Zn Anode

Aqueous zinc ion batteries (AZIBs) are promising electrochemical energy storage devices due to their high theoretical specific capacity, low cost, and environmental friendliness. However, uncontrolled dendrite growth poses a serious threat to the reversibility of Zn plating/stripping, which impacts...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xin, Shu, Tie, Huang, Haoyu, Yi, Hongquan, Zhang, Yanchi, Xiao, Wei, Li, Liang, Zhang, Yuxin, Ma, Minghao, Liu, Xingyuan, Yao, Kexin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302738/
https://www.ncbi.nlm.nih.gov/pubmed/37375344
http://dx.doi.org/10.3390/molecules28124789
Descripción
Sumario:Aqueous zinc ion batteries (AZIBs) are promising electrochemical energy storage devices due to their high theoretical specific capacity, low cost, and environmental friendliness. However, uncontrolled dendrite growth poses a serious threat to the reversibility of Zn plating/stripping, which impacts the stability of batteries. Therefore, controlling the disordered dendrite growth remains a considerable challenge in the development of AZIBs. Herein, a ZIF-8-derived ZnO/C/N composite (ZOCC) interface layer was constructed on the surface of the Zn anode. The homogeneous distribution of zincophilic ZnO and the N element in the ZOCC facilitates directional Zn deposition on the (002) crystal plane. Moreover, the conductive skeleton with a microporous structure accelerates Zn(2+) transport kinetics, resulting in a reduction in polarization. As a result, the stability and electrochemical properties of AZIBs are improved. Specifically, the ZOCC@Zn symmetric cell sustains over 1150 h at 0.5 mA cm(−2) with 0.25 mA h cm(−2), while the ZOCC@Zn half-cell achieves an outstanding Coulombic efficiency of 99.79% over 2000 cycles. This work provides a simple and effective strategy for improving the lifespan of AZIBs.