Cargando…

Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process

The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Hai, Zhu, Hong-Yan, Han, Jie, Fu, Chun, Chen, Mi-Mi, Wang, Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302756/
https://www.ncbi.nlm.nih.gov/pubmed/37374526
http://dx.doi.org/10.3390/ma16124342
_version_ 1785065118569070592
author Sun, Hai
Zhu, Hong-Yan
Han, Jie
Fu, Chun
Chen, Mi-Mi
Wang, Kun
author_facet Sun, Hai
Zhu, Hong-Yan
Han, Jie
Fu, Chun
Chen, Mi-Mi
Wang, Kun
author_sort Sun, Hai
collection PubMed
description The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fortunately, infrared thermal imaging monitoring technology has obvious advantages in the experimental study of rock failure processes and energy dissipation and release characteristics under load damage. Therefore, it is necessary to establish the theoretical relationship between the strain energy and infrared radiation information of sandstone and to reveal its fracture energy dissipation and disaster mechanism. In this study, an MTS electro-hydraulic servo press was used to carry out uniaxial loading experiments on sandstone. The characteristics of dissipated energy, elastic energy, and infrared radiation during the damage process of sandstone were studied using infrared thermal imaging technology. The results show that (1) the transition of sandstone loading from one stable state to another occurs in the form of an abrupt change. This sudden change is characterized by the simultaneous occurrence of elastic energy release, dissipative energy surging, and infrared radiation count (IRC) surging, and it has the characteristics of a short duration and large amplitude variation. (2) With the increase in the elastic energy variation, the surge in the IRC of sandstone samples presents three different development stages, namely fluctuation (stage Ⅰ), steady rise (stage Ⅱ), and rapid rise (stage Ⅲ). (3) The more obvious the surge in the IRC, the greater the degree of local damage of the sandstone and the greater the range of the corresponding elastic energy change (or dissipation energy change). (4) A method of sandstone microcrack location and propagation pattern recognition based on infrared thermal imaging technology is proposed. This method can dynamically generate the distribution nephograph of tension-shear microcracks of the bearing rock and accurately evaluate the real-time process of rock damage evolution. Finally, this study can provide a theoretical basis for rock stability, safety monitoring, and early warning.
format Online
Article
Text
id pubmed-10302756
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103027562023-06-29 Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process Sun, Hai Zhu, Hong-Yan Han, Jie Fu, Chun Chen, Mi-Mi Wang, Kun Materials (Basel) Article The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fortunately, infrared thermal imaging monitoring technology has obvious advantages in the experimental study of rock failure processes and energy dissipation and release characteristics under load damage. Therefore, it is necessary to establish the theoretical relationship between the strain energy and infrared radiation information of sandstone and to reveal its fracture energy dissipation and disaster mechanism. In this study, an MTS electro-hydraulic servo press was used to carry out uniaxial loading experiments on sandstone. The characteristics of dissipated energy, elastic energy, and infrared radiation during the damage process of sandstone were studied using infrared thermal imaging technology. The results show that (1) the transition of sandstone loading from one stable state to another occurs in the form of an abrupt change. This sudden change is characterized by the simultaneous occurrence of elastic energy release, dissipative energy surging, and infrared radiation count (IRC) surging, and it has the characteristics of a short duration and large amplitude variation. (2) With the increase in the elastic energy variation, the surge in the IRC of sandstone samples presents three different development stages, namely fluctuation (stage Ⅰ), steady rise (stage Ⅱ), and rapid rise (stage Ⅲ). (3) The more obvious the surge in the IRC, the greater the degree of local damage of the sandstone and the greater the range of the corresponding elastic energy change (or dissipation energy change). (4) A method of sandstone microcrack location and propagation pattern recognition based on infrared thermal imaging technology is proposed. This method can dynamically generate the distribution nephograph of tension-shear microcracks of the bearing rock and accurately evaluate the real-time process of rock damage evolution. Finally, this study can provide a theoretical basis for rock stability, safety monitoring, and early warning. MDPI 2023-06-13 /pmc/articles/PMC10302756/ /pubmed/37374526 http://dx.doi.org/10.3390/ma16124342 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sun, Hai
Zhu, Hong-Yan
Han, Jie
Fu, Chun
Chen, Mi-Mi
Wang, Kun
Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process
title Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process
title_full Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process
title_fullStr Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process
title_full_unstemmed Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process
title_short Energy and Infrared Radiation Characteristics of the Sandstone Damage Evolution Process
title_sort energy and infrared radiation characteristics of the sandstone damage evolution process
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302756/
https://www.ncbi.nlm.nih.gov/pubmed/37374526
http://dx.doi.org/10.3390/ma16124342
work_keys_str_mv AT sunhai energyandinfraredradiationcharacteristicsofthesandstonedamageevolutionprocess
AT zhuhongyan energyandinfraredradiationcharacteristicsofthesandstonedamageevolutionprocess
AT hanjie energyandinfraredradiationcharacteristicsofthesandstonedamageevolutionprocess
AT fuchun energyandinfraredradiationcharacteristicsofthesandstonedamageevolutionprocess
AT chenmimi energyandinfraredradiationcharacteristicsofthesandstonedamageevolutionprocess
AT wangkun energyandinfraredradiationcharacteristicsofthesandstonedamageevolutionprocess