Cargando…

A Compact Piezo-Inertia Actuator Utilizing the Double-Rocker Flexure Hinge Mechanism

With a simple structure and control method, the piezo-inertia actuator is a preferred embodiment in the field of microprecision industry. However, most of the previously reported actuators are unable to achieve a high speed, high resolution, and low deviation between positive and reverse velocities...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Pingping, Lei, Chenglong, Ge, Chuannan, Guo, Yunjun, Zhu, Xingxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302811/
https://www.ncbi.nlm.nih.gov/pubmed/37374702
http://dx.doi.org/10.3390/mi14061117
Descripción
Sumario:With a simple structure and control method, the piezo-inertia actuator is a preferred embodiment in the field of microprecision industry. However, most of the previously reported actuators are unable to achieve a high speed, high resolution, and low deviation between positive and reverse velocities at the same time. To achieve a high speed, high resolution, and low deviation, in this paper we present a compact piezo-inertia actuator with a double rocker-type flexure hinge mechanism. The structure and operating principle are discussed in detail. To study the load capacity, voltage characteristics, and frequency characteristics of the actuator, we made a prototype and conducted a series of experiment. The results indicate good linearity in both positive and negative output displacements. The maximum positive and negative velocities are about 10.63 mm/s and 10.12 mm/s, respectively, and the corresponding speed deviation is 4.9%. The positive and negative positioning resolutions are 42.5 nm and 52.5 nm, respectively. In addition, the maximum output force is 220 g. These results show that the designed actuator has a minor speed deviation and good output characteristics.