Cargando…

Multi-Trait Genome-Wide Association Studies of Sorghum bicolor Regarding Resistance to Anthracnose, Downy Mildew, Grain Mold and Head Smut

Multivariate linear mixed models (mvLMMs) are widely applied for genome-wide association studies (GWAS) to detect genetic variants affecting multiple traits with correlations and/or different plant growth stages. Subsets of multiple sorghum populations, including the Sorghum Association Panel (SAP),...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahn, Ezekiel, Prom, Louis K., Magill, Clint
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302846/
https://www.ncbi.nlm.nih.gov/pubmed/37375469
http://dx.doi.org/10.3390/pathogens12060779
Descripción
Sumario:Multivariate linear mixed models (mvLMMs) are widely applied for genome-wide association studies (GWAS) to detect genetic variants affecting multiple traits with correlations and/or different plant growth stages. Subsets of multiple sorghum populations, including the Sorghum Association Panel (SAP), the Sorghum Mini Core Collection and the Senegalese sorghum population, have been screened against various sorghum diseases such as anthracnose, downy mildew, grain mold and head smut. Still, these studies were generally performed in a univariate framework. In this study, we performed GWAS based on the principal components of defense-related multi-traits against the fungal diseases, identifying new potential SNPs (S04_51771351, S02_66200847, S09_47938177, S08_7370058, S03_72625166, S07_17951013, S04_66666642 and S08_51886715) associated with sorghum’s defense against these diseases.