Cargando…
A Novel Thermal Tactile Sensor Based on Micro Thermoelectric Generator for Underwater Flow Direction Perception
Underwater vehicles can operate independently in the exploitation of marine resources. However, water flow disturbance is one of the challenges underwater vehicles must face. The underwater flow direction sensing method is a feasible way to overcome the challenges but faces difficulties such as inte...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302903/ https://www.ncbi.nlm.nih.gov/pubmed/37420543 http://dx.doi.org/10.3390/s23125375 |
Sumario: | Underwater vehicles can operate independently in the exploitation of marine resources. However, water flow disturbance is one of the challenges underwater vehicles must face. The underwater flow direction sensing method is a feasible way to overcome the challenges but faces difficulties such as integrating the existing sensors with underwater vehicles and high-cost maintenance fees. In this research, an underwater flow direction sensing method based on the thermal tactility of the micro thermoelectric generator (MTEG) is proposed, with the theoretical model established. To verify the model, a flow direction sensing prototype is fabricated to carry out experiments under three typical working conditions. The three typical flow direction conditions are: condition No. 1, in which the flow direction is parallel to the x-axis; condition No. 2, in which the flow direction is at an angle of 45° to the x-axis; and condition No. 3, which is a variable flow direction condition based on condition No. 1 and condition No. 2. According to the experimental data, the variations and orders of the prototype output voltages under three conditions fit the theoretical model, which means the prototype can identify the flow direction of three conditions. Besides, experimental data show that in the flow velocity range of 0~5 m/s and the flow direction variation range of 0~90°, the prototype can accurately identify the flow direction in 0~2 s. The first time utilizing MTEG on underwater flow direction perception, the underwater flow direction sensing method proposed in this research is cheaper and easier to be applied on the underwater vehicles than traditional underwater flow direction sensing methods, which means it has great application prospects in underwater vehicles. Besides, the MTEG can utilize the waste heat of the underwater vehicle battery as the energy source to achieve self-powered work, which greatly enhances its practical value. |
---|