Cargando…
PreOBP_ML: Machine Learning Algorithms for Prediction of Optical Biosensor Parameters
To develop standard optical biosensors, the simulation procedure takes a lot of time. For reducing that enormous amount of time and effort, machine learning might be a better solution. Effective indices, core power, total power, and effective area are the most crucial parameters for evaluating optic...
Autores principales: | Ahmed, Kawsar, Bui, Francis M., Wu, Fang-Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302917/ https://www.ncbi.nlm.nih.gov/pubmed/37374757 http://dx.doi.org/10.3390/mi14061174 |
Ejemplares similares
-
Beam Profile from OBP
por: van Apeldoorn, J, et al.
Publicado: (1975) -
Identification of Odorant-Binding Proteins (OBPs) and Functional Analysis of Phase-Related OBPs in the Migratory Locust
por: Guo, Wei, et al.
Publicado: (2018) -
Functional Evolution of Duplicated Odorant-Binding Protein Genes, Obp57d and Obp57e, in Drosophila
por: Harada, Eriko, et al.
Publicado: (2012) -
Predicted structure of a Minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs
por: Zheng, Zhi-Chuan, et al.
Publicado: (2016) -
Functional Analysis of Two Odorant-Binding Proteins, MaltOBP9 and MaltOBP10, in Monochamus alternatus Hope
por: Li, Dong-Zhen, et al.
Publicado: (2020)