Cargando…
MSATNet: multi-scale adaptive transformer network for motor imagery classification
Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address thes...
Autores principales: | Hu, Lingyan, Hong, Weijie, Liu, Lingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303110/ https://www.ncbi.nlm.nih.gov/pubmed/37389361 http://dx.doi.org/10.3389/fnins.2023.1173778 |
Ejemplares similares
-
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning
por: Feng, Jin, et al.
Publicado: (2022) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021) -
Multiclass Classification Based on Combined Motor Imageries
por: Lindig-León, Cecilia, et al.
Publicado: (2020) -
Motor Imagery EEG Classification Based on Transfer Learning and Multi-Scale Convolution Network
por: Chang, Zhanyuan, et al.
Publicado: (2022)