Cargando…
Graph Neural Network-Guided Contrastive Learning for Sequential Recommendation
Sequential recommendation uses contrastive learning to randomly augment user sequences and alleviate the data sparsity problem. However, there is no guarantee that the augmented positive or negative views remain semantically similar. To address this issue, we propose graph neural network-guided cont...
Autores principales: | Yang, Xing-Yao, Xu, Feng, Yu, Jiong, Li, Zi-Yang, Wang, Dong-Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303316/ https://www.ncbi.nlm.nih.gov/pubmed/37420737 http://dx.doi.org/10.3390/s23125572 |
Ejemplares similares
-
Graph neural networks for preference social recommendation
por: Ma, Gang-Feng, et al.
Publicado: (2023) -
Transferable Coarse Graining via Contrastive Learning of Graph Neural Networks
por: Airas, Justin, et al.
Publicado: (2023) -
Meta-path guided graph attention network for explainable herb recommendation
por: Jin, Yuanyuan, et al.
Publicado: (2023) -
Self-supervised graph neural network with pre-training generative learning for recommendation systems
por: Min, Xin, et al.
Publicado: (2022) -
Fast protein structure comparison through effective representation learning with contrastive graph neural networks
por: Xia, Chunqiu, et al.
Publicado: (2022)