Cargando…
Intelligent Fault Diagnosis of Liquid Rocket Engine via Interpretable LSTM with Multisensory Data
Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM)...
Autores principales: | Zhang, Xiaoguang, Hua, Xuanhao, Zhu, Junjie, Ma, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303355/ https://www.ncbi.nlm.nih.gov/pubmed/37420802 http://dx.doi.org/10.3390/s23125636 |
Ejemplares similares
-
Failure characteristics analysis and fault diagnosis for liquid rocket engines
por: Zhang, Wei
Publicado: (2016) -
History of liquid propellant rocket engines
por: Sutton, George P
Publicado: (2006) -
Combination of VMD Mapping MFCC and LSTM: A New Acoustic Fault Diagnosis Method of Diesel Engine
por: Yan, Hao, et al.
Publicado: (2022) -
A Method for Real-Time Fault Detection of Liquid Rocket Engine Based on Adaptive Genetic Algorithm Optimizing Back Propagation Neural Network
por: Yu, Huahuang, et al.
Publicado: (2021) -
Nuclear Rocket Engine Reactor
por: Lanin, Anatoly
Publicado: (2013)