Cargando…

Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans

Recently, the transgenerational toxicity of nanoplastics has received increasing attention. Caenorhabditis elegans is a useful model to assess the transgenerational toxicity of different pollutants. In nematodes, the possibility of early-life exposure to sulfonate-modified polystyrene nanoparticle (...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Wenmiao, Gu, Aihua, Wang, Dayong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303405/
https://www.ncbi.nlm.nih.gov/pubmed/37368611
http://dx.doi.org/10.3390/toxics11060511
_version_ 1785065269874393088
author He, Wenmiao
Gu, Aihua
Wang, Dayong
author_facet He, Wenmiao
Gu, Aihua
Wang, Dayong
author_sort He, Wenmiao
collection PubMed
description Recently, the transgenerational toxicity of nanoplastics has received increasing attention. Caenorhabditis elegans is a useful model to assess the transgenerational toxicity of different pollutants. In nematodes, the possibility of early-life exposure to sulfonate-modified polystyrene nanoparticle (PS-S NP) causing transgenerational toxicity and its underlying mechanisms were investigated. After exposure at the L1-larval stage, transgenerational inhibition in both locomotion behavior (body bend and head thrash) and reproductive capacity (number of offspring and fertilized egg number in uterus) was induced by 1–100 μg/L PS-S NP. Meanwhile, after exposure to 1–100 μg/L PS-S NP, the expression of germline lag-2 encoding Notch ligand was increased not only at the parental generation (P0-G) but also in the offspring, and the transgenerational toxicity was inhibited by the germline RNA interference (RNAi) of lag-2. During the transgenerational toxicity formation, the parental LAG-2 activated the corresponding Notch receptor GLP-1 in the offspring, and transgenerational toxicity was also suppressed by glp-1 RNAi. GLP-1 functioned in the germline and the neurons to mediate the PS-S NP toxicity. In PS-S NP-exposed nematodes, germline GLP-1 activated the insulin peptides of INS-39, INS-3, and DAF-28, and neuronal GLP-1 inhibited the DAF-7, DBL-1, and GLB-10. Therefore, the exposure risk in inducing transgenerational toxicity through PS-S NP was suggested, and this transgenerational toxicity was mediated by the activation of germline Notch signal in organisms.
format Online
Article
Text
id pubmed-10303405
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103034052023-06-29 Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans He, Wenmiao Gu, Aihua Wang, Dayong Toxics Article Recently, the transgenerational toxicity of nanoplastics has received increasing attention. Caenorhabditis elegans is a useful model to assess the transgenerational toxicity of different pollutants. In nematodes, the possibility of early-life exposure to sulfonate-modified polystyrene nanoparticle (PS-S NP) causing transgenerational toxicity and its underlying mechanisms were investigated. After exposure at the L1-larval stage, transgenerational inhibition in both locomotion behavior (body bend and head thrash) and reproductive capacity (number of offspring and fertilized egg number in uterus) was induced by 1–100 μg/L PS-S NP. Meanwhile, after exposure to 1–100 μg/L PS-S NP, the expression of germline lag-2 encoding Notch ligand was increased not only at the parental generation (P0-G) but also in the offspring, and the transgenerational toxicity was inhibited by the germline RNA interference (RNAi) of lag-2. During the transgenerational toxicity formation, the parental LAG-2 activated the corresponding Notch receptor GLP-1 in the offspring, and transgenerational toxicity was also suppressed by glp-1 RNAi. GLP-1 functioned in the germline and the neurons to mediate the PS-S NP toxicity. In PS-S NP-exposed nematodes, germline GLP-1 activated the insulin peptides of INS-39, INS-3, and DAF-28, and neuronal GLP-1 inhibited the DAF-7, DBL-1, and GLB-10. Therefore, the exposure risk in inducing transgenerational toxicity through PS-S NP was suggested, and this transgenerational toxicity was mediated by the activation of germline Notch signal in organisms. MDPI 2023-06-06 /pmc/articles/PMC10303405/ /pubmed/37368611 http://dx.doi.org/10.3390/toxics11060511 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
He, Wenmiao
Gu, Aihua
Wang, Dayong
Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans
title Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans
title_full Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans
title_fullStr Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans
title_full_unstemmed Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans
title_short Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans
title_sort sulfonate-modified polystyrene nanoparticle at precited environmental concentrations induces transgenerational toxicity associated with increase in germline notch signal of caenorhabditis elegans
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303405/
https://www.ncbi.nlm.nih.gov/pubmed/37368611
http://dx.doi.org/10.3390/toxics11060511
work_keys_str_mv AT hewenmiao sulfonatemodifiedpolystyrenenanoparticleatprecitedenvironmentalconcentrationsinducestransgenerationaltoxicityassociatedwithincreaseingermlinenotchsignalofcaenorhabditiselegans
AT guaihua sulfonatemodifiedpolystyrenenanoparticleatprecitedenvironmentalconcentrationsinducestransgenerationaltoxicityassociatedwithincreaseingermlinenotchsignalofcaenorhabditiselegans
AT wangdayong sulfonatemodifiedpolystyrenenanoparticleatprecitedenvironmentalconcentrationsinducestransgenerationaltoxicityassociatedwithincreaseingermlinenotchsignalofcaenorhabditiselegans