Cargando…
Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans
Recently, the transgenerational toxicity of nanoplastics has received increasing attention. Caenorhabditis elegans is a useful model to assess the transgenerational toxicity of different pollutants. In nematodes, the possibility of early-life exposure to sulfonate-modified polystyrene nanoparticle (...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303405/ https://www.ncbi.nlm.nih.gov/pubmed/37368611 http://dx.doi.org/10.3390/toxics11060511 |
_version_ | 1785065269874393088 |
---|---|
author | He, Wenmiao Gu, Aihua Wang, Dayong |
author_facet | He, Wenmiao Gu, Aihua Wang, Dayong |
author_sort | He, Wenmiao |
collection | PubMed |
description | Recently, the transgenerational toxicity of nanoplastics has received increasing attention. Caenorhabditis elegans is a useful model to assess the transgenerational toxicity of different pollutants. In nematodes, the possibility of early-life exposure to sulfonate-modified polystyrene nanoparticle (PS-S NP) causing transgenerational toxicity and its underlying mechanisms were investigated. After exposure at the L1-larval stage, transgenerational inhibition in both locomotion behavior (body bend and head thrash) and reproductive capacity (number of offspring and fertilized egg number in uterus) was induced by 1–100 μg/L PS-S NP. Meanwhile, after exposure to 1–100 μg/L PS-S NP, the expression of germline lag-2 encoding Notch ligand was increased not only at the parental generation (P0-G) but also in the offspring, and the transgenerational toxicity was inhibited by the germline RNA interference (RNAi) of lag-2. During the transgenerational toxicity formation, the parental LAG-2 activated the corresponding Notch receptor GLP-1 in the offspring, and transgenerational toxicity was also suppressed by glp-1 RNAi. GLP-1 functioned in the germline and the neurons to mediate the PS-S NP toxicity. In PS-S NP-exposed nematodes, germline GLP-1 activated the insulin peptides of INS-39, INS-3, and DAF-28, and neuronal GLP-1 inhibited the DAF-7, DBL-1, and GLB-10. Therefore, the exposure risk in inducing transgenerational toxicity through PS-S NP was suggested, and this transgenerational toxicity was mediated by the activation of germline Notch signal in organisms. |
format | Online Article Text |
id | pubmed-10303405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103034052023-06-29 Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans He, Wenmiao Gu, Aihua Wang, Dayong Toxics Article Recently, the transgenerational toxicity of nanoplastics has received increasing attention. Caenorhabditis elegans is a useful model to assess the transgenerational toxicity of different pollutants. In nematodes, the possibility of early-life exposure to sulfonate-modified polystyrene nanoparticle (PS-S NP) causing transgenerational toxicity and its underlying mechanisms were investigated. After exposure at the L1-larval stage, transgenerational inhibition in both locomotion behavior (body bend and head thrash) and reproductive capacity (number of offspring and fertilized egg number in uterus) was induced by 1–100 μg/L PS-S NP. Meanwhile, after exposure to 1–100 μg/L PS-S NP, the expression of germline lag-2 encoding Notch ligand was increased not only at the parental generation (P0-G) but also in the offspring, and the transgenerational toxicity was inhibited by the germline RNA interference (RNAi) of lag-2. During the transgenerational toxicity formation, the parental LAG-2 activated the corresponding Notch receptor GLP-1 in the offspring, and transgenerational toxicity was also suppressed by glp-1 RNAi. GLP-1 functioned in the germline and the neurons to mediate the PS-S NP toxicity. In PS-S NP-exposed nematodes, germline GLP-1 activated the insulin peptides of INS-39, INS-3, and DAF-28, and neuronal GLP-1 inhibited the DAF-7, DBL-1, and GLB-10. Therefore, the exposure risk in inducing transgenerational toxicity through PS-S NP was suggested, and this transgenerational toxicity was mediated by the activation of germline Notch signal in organisms. MDPI 2023-06-06 /pmc/articles/PMC10303405/ /pubmed/37368611 http://dx.doi.org/10.3390/toxics11060511 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article He, Wenmiao Gu, Aihua Wang, Dayong Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans |
title | Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans |
title_full | Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans |
title_fullStr | Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans |
title_full_unstemmed | Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans |
title_short | Sulfonate-Modified Polystyrene Nanoparticle at Precited Environmental Concentrations Induces Transgenerational Toxicity Associated with Increase in Germline Notch Signal of Caenorhabditis elegans |
title_sort | sulfonate-modified polystyrene nanoparticle at precited environmental concentrations induces transgenerational toxicity associated with increase in germline notch signal of caenorhabditis elegans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303405/ https://www.ncbi.nlm.nih.gov/pubmed/37368611 http://dx.doi.org/10.3390/toxics11060511 |
work_keys_str_mv | AT hewenmiao sulfonatemodifiedpolystyrenenanoparticleatprecitedenvironmentalconcentrationsinducestransgenerationaltoxicityassociatedwithincreaseingermlinenotchsignalofcaenorhabditiselegans AT guaihua sulfonatemodifiedpolystyrenenanoparticleatprecitedenvironmentalconcentrationsinducestransgenerationaltoxicityassociatedwithincreaseingermlinenotchsignalofcaenorhabditiselegans AT wangdayong sulfonatemodifiedpolystyrenenanoparticleatprecitedenvironmentalconcentrationsinducestransgenerationaltoxicityassociatedwithincreaseingermlinenotchsignalofcaenorhabditiselegans |