Cargando…
Machine-Learning Methods for Speech and Handwriting Detection Using Neural Signals: A Review
Brain–Computer Interfaces (BCIs) have become increasingly popular in recent years due to their potential applications in diverse fields, ranging from the medical sector (people with motor and/or communication disabilities), cognitive training, gaming, and Augmented Reality/Virtual Reality (AR/VR), a...
Autores principales: | Sen, Ovishake, Sheehan, Anna M., Raman, Pranay R., Khara, Kabir S., Khalifa, Adam, Chatterjee, Baibhab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303480/ https://www.ncbi.nlm.nih.gov/pubmed/37420741 http://dx.doi.org/10.3390/s23125575 |
Ejemplares similares
-
Handwriting Declines With Human Aging: A Machine Learning Study
por: Asci, Francesco, et al.
Publicado: (2022) -
Time-Dependent Statistical and Correlation Properties of Neural Signals during Handwriting
por: Rupasov, Valery I., et al.
Publicado: (2012) -
Handwriting
por: Zanchettin, Cleber, et al.
Publicado: (2017) -
Men and women differ in the neural basis of handwriting
por: Yang, Yang, et al.
Publicado: (2020) -
The lognormal handwriter: learning, performing, and declining
por: Plamondon, Réjean, et al.
Publicado: (2013)