Cargando…

Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites

SERS substrates formed by spherical silver nanoparticles (Ag-NPs) with a 15 nm average diameter adsorbed on Si substrate at three different concentrations and Ag/PMMA composites formed by an opal of PMMA microspheres of 298 nm average diameter were synthesized. The Ag-NPs were varied at three differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Matamoros-Ambrocio, Mayra, Sánchez-Mora, Enrique, Gómez-Barojas, Estela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303496/
https://www.ncbi.nlm.nih.gov/pubmed/37376270
http://dx.doi.org/10.3390/polym15122624
_version_ 1785065290612080640
author Matamoros-Ambrocio, Mayra
Sánchez-Mora, Enrique
Gómez-Barojas, Estela
author_facet Matamoros-Ambrocio, Mayra
Sánchez-Mora, Enrique
Gómez-Barojas, Estela
author_sort Matamoros-Ambrocio, Mayra
collection PubMed
description SERS substrates formed by spherical silver nanoparticles (Ag-NPs) with a 15 nm average diameter adsorbed on Si substrate at three different concentrations and Ag/PMMA composites formed by an opal of PMMA microspheres of 298 nm average diameter were synthesized. The Ag-NPs were varied at three different concentrations. We have observed from SEM micrographs, in the Ag/PMMA composites, the periodicity of the PMMA opals is slightly altered as the Ag-NP concentration is increased; as a consequence of this effect, the PBGs maxima shift toward longer wavelengths, decrease in intensity, and broaden as the Ag-NP concentration is increased in the composites. The performance of single Ag-NP and Ag/PMMA composites as SERS substrates was determined using methylene blue (MB) as a probe molecule with concentrations in the range of 0.5 µM to 2.5 µM. We found that in both single Ag-NP and Ag/PMMA composites as SERS substrates, the enhancement factor (EF) increases as the Ag-NP concentration is increased. We highlight that the SERS substrate with the highest concentration of Ag-NPs has the highest EF due to the formation of metallic clusters on the surface, which generates more “hot spots”. The comparison of the EFs of the single Ag-NP with those of Ag/PMMA composite SERS substrates shows that the EFs of the former are nearly 10-fold higher than those of Ag/PMMA composites. This result is obtained probably due to the porosity of the PMMA microspheres that decreases the local electric field strength. Furthermore, PMMA exerts a shielding effect that affects the optical efficiency of Ag-NPs. Moreover, the metal–dielectric surface interaction contributes to the decrease in the EF. Other aspect to consider in our results is in relation to the difference in the EF of the Ag/PMMA composite and Ag-NP SERS substrates and is due to the existing mismatch between the frequency range of the PMMA opal stop band and the LSPR frequency range of the Ag metal nanoparticles adsorbed on the PMMA opal host matrix.
format Online
Article
Text
id pubmed-10303496
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103034962023-06-29 Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites Matamoros-Ambrocio, Mayra Sánchez-Mora, Enrique Gómez-Barojas, Estela Polymers (Basel) Article SERS substrates formed by spherical silver nanoparticles (Ag-NPs) with a 15 nm average diameter adsorbed on Si substrate at three different concentrations and Ag/PMMA composites formed by an opal of PMMA microspheres of 298 nm average diameter were synthesized. The Ag-NPs were varied at three different concentrations. We have observed from SEM micrographs, in the Ag/PMMA composites, the periodicity of the PMMA opals is slightly altered as the Ag-NP concentration is increased; as a consequence of this effect, the PBGs maxima shift toward longer wavelengths, decrease in intensity, and broaden as the Ag-NP concentration is increased in the composites. The performance of single Ag-NP and Ag/PMMA composites as SERS substrates was determined using methylene blue (MB) as a probe molecule with concentrations in the range of 0.5 µM to 2.5 µM. We found that in both single Ag-NP and Ag/PMMA composites as SERS substrates, the enhancement factor (EF) increases as the Ag-NP concentration is increased. We highlight that the SERS substrate with the highest concentration of Ag-NPs has the highest EF due to the formation of metallic clusters on the surface, which generates more “hot spots”. The comparison of the EFs of the single Ag-NP with those of Ag/PMMA composite SERS substrates shows that the EFs of the former are nearly 10-fold higher than those of Ag/PMMA composites. This result is obtained probably due to the porosity of the PMMA microspheres that decreases the local electric field strength. Furthermore, PMMA exerts a shielding effect that affects the optical efficiency of Ag-NPs. Moreover, the metal–dielectric surface interaction contributes to the decrease in the EF. Other aspect to consider in our results is in relation to the difference in the EF of the Ag/PMMA composite and Ag-NP SERS substrates and is due to the existing mismatch between the frequency range of the PMMA opal stop band and the LSPR frequency range of the Ag metal nanoparticles adsorbed on the PMMA opal host matrix. MDPI 2023-06-09 /pmc/articles/PMC10303496/ /pubmed/37376270 http://dx.doi.org/10.3390/polym15122624 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Matamoros-Ambrocio, Mayra
Sánchez-Mora, Enrique
Gómez-Barojas, Estela
Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites
title Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites
title_full Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites
title_fullStr Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites
title_full_unstemmed Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites
title_short Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites
title_sort surface-enhanced raman scattering (sers) substrates based on ag-nanoparticles and ag-nanoparticles/poly (methyl methacrylate) composites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303496/
https://www.ncbi.nlm.nih.gov/pubmed/37376270
http://dx.doi.org/10.3390/polym15122624
work_keys_str_mv AT matamorosambrociomayra surfaceenhancedramanscatteringserssubstratesbasedonagnanoparticlesandagnanoparticlespolymethylmethacrylatecomposites
AT sanchezmoraenrique surfaceenhancedramanscatteringserssubstratesbasedonagnanoparticlesandagnanoparticlespolymethylmethacrylatecomposites
AT gomezbarojasestela surfaceenhancedramanscatteringserssubstratesbasedonagnanoparticlesandagnanoparticlespolymethylmethacrylatecomposites